scholarly journals Robust Day-Ahead Scheduling of Electricity and Natural Gas Systems via a Risk-Averse Adjustable Uncertainty Set Approach

2018 ◽  
Vol 10 (11) ◽  
pp. 3848 ◽  
Author(s):  
Li Yao ◽  
Xiuli Wang ◽  
Tao Qian ◽  
Shixiong Qi ◽  
Chengzhi Zhu

The requirement for energy sustainability drives the development of renewable energy technologies and gas-fired power generation. The increasing installation of gas-fired units significantly intensifies the interdependency between the electricity system and natural gas system. The joint scheduling of electricity and natural gas systems has become an attractive option for improving energy efficiency. This paper proposes a robust day-ahead scheduling model for electricity and natural gas system, which minimizes the total cost including fuel cost, spinning reserve cost and cost of operational risk while ensuring the feasibility for all scenarios within the uncertainty set. Different from the conventional robust optimization with predefined uncertainty set, a new approach with risk-averse adjustable uncertainty set is proposed in this paper to mitigate the conservatism. Furthermore, the Wasserstein–Moment metric is applied to construct ambiguity sets for computing operational risk. The proposed scheduling model is solved by the column-and-constraint generation method. The effectiveness of the proposed approach is tested on a 6-bus test system and a 118-bus system.

2021 ◽  
Vol 2121 (1) ◽  
pp. 012003
Author(s):  
Jiacheng Ruan ◽  
Yongji Cao

Abstract In recent years, with the increasing of gas-fired power plants and the development of power-to-gas (P2G) technology, and the interdependence between the power system and the natural gas system has gradually deepened. This paper proposes a day-ahead optimal scheduling model for an electricity-gas integrated system. Based on P2G, it can realize the two-way movement of energy between the power system and the natural gas system, promote the coordinated and optimized operation of the two energy systems, and improve energy utilization. The model proposed in this paper minimizes the total cost of both systems. Firstly, the power system sub-model and the natural gas system sub-model in the collaborative optimization model are studied separately, and the constraints between the two systems are considered. Then, the piecewise linearization method and DC power flow simplification method are adopted, the nonlinear problem is transformed into a mixed integer linear programming problem. Finally, the load forecast value of the day-ahead dispatch is loaded, and the 24-hour dispatch result is obtained through the simulation platform, and the P2G is used for joint dispatch.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3400
Author(s):  
Jie Xing ◽  
Peng Wu

Bidirectional coupling systems for electricity and natural gas composed of gas units and power-to-gas (P2G) facilities improve the interactions between different energy systems. In this paper, a combined optimization planning method for an electricity-natural gas coupling system with P2G was studied. Firstly, the characteristics of the component model of the electricity-natural gas coupling system were analyzed. The optimization planning model for the electricity-natural gas coupling system was established with the goal of minimizing the sum of the annual investment costs and the annual operation costs. Based on the established model, the construction statuses for different types of units, power lines, and pipelines and the output distribution values for gas units and P2G stations were optimized. Then, the immune algorithm was proposed to solve the optimization planning model. Finally, an electricity-natural gas coupling system composed of a seven-node natural gas system and a nine-node power system was taken as an example to verify the rationality and effectiveness of the model under different scenarios.


2016 ◽  
Vol 48 ◽  
pp. 257-264 ◽  
Author(s):  
Lin Zhu ◽  
Le Zhang ◽  
Junming Fan ◽  
Peng Jiang ◽  
Luling Li

Sign in / Sign up

Export Citation Format

Share Document