scholarly journals Assessment of Land Cover Change and Its Impact on Changes in Soil Erosion Risk in Nepal

2018 ◽  
Vol 10 (12) ◽  
pp. 4715 ◽  
Author(s):  
Kabir Uddin ◽  
Mir Abdul Matin ◽  
Sajana Maharjan

Land cover change is a critical driver for enhancing the soil erosion risk in Nepal. Loss of the topsoil has a direct and indirect effect on human life and livelihoods. The present study provides an assessment of the decadal land use and land cover (LULC) change and consequent changes in the distribution of soil erosion risk for the years, 1990, 2000, and 2010, for the entire country of Nepal. The study attempted to understand how different land cover types change over the three decades and how it has changed the distribution of soil erosion risks in Nepal that would help in the development of soil conservation priority. The land cover maps were produced using geographic object-based image analysis (GEOBIA) using Landsat images. Soil erosion patterns were assessed using the revised universal soil loss equation (RUSLE) with the land cover as the input. The study shows that the forest cover is the most dominant land cover in Nepal that comprises about 6,200,000 ha forest cover. The estimated annual erosion was 129.30 million tons in 1990 and 110.53 million tons in 2010. The assessment of soil erosion dynamics was presented at the national, provincial, and district level. District wise analysis revealed that Gulmi, Parbat, Syangja, and the Tanahu district require priority for soil conservation.

Author(s):  
Gezahegn Weldu ◽  
Arus Edo

Land use and land cover change (LULCC) is a critical factor for enhancing the soil erosion risk and land degradation process in the Wabi Shebelle Basin. Up-to-date spatial and statistical data on basin-wide erosion rates can provide an important basis for planning and conservation of soil and water ecosystems. The objectives of this study were to examine the magnitude of LULCC and consequent changes in the spatial extent of soil erosion risk, and identify priority areas for Soil and Water Conservation (SWC) in the Erer Sub-Basin, Wabi Shebelle Basin, Ethiopia. The soil loss rates were estimated using an empirical prediction model of the Revised Universal Soil Loss Equation (RUSLE) outlined in the ArcGIS environment. The estimated total annual actual soil loss at the sub-basin level was 1.01 million tons in 2000 and 1.52 million tons in 2018 with a mean erosion rate of 75.85 t ha–1 y–1 and 107.07 t ha–1 y–1, respectively. The most extensive soil loss rates were estimated in croplands and bare land cover, with a mean soil loss rate of 37.60 t ha–1 y–1 and 15.78 t ha−1 y−1, respectively. The soil erosion risk has increased by 18.28% of the total area, and decreased by 15.93%, showing that the overall soil erosion situation is worsening in the study area. We determined SWC priority areas using the Multi-Criteria Decision Rule (MCDR) approach, indicates that the top three levels identified for intense SWC account for about 2.50%, 2.38%, and 2.14%, respectively. These priority levels are typically situated along the steep slopes in Babile, Fedis, Fik, Gursum, Gola Oda, Haramaya, Jarso, and Kombolcha districts that need emergency SWC measures.


Land ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 111
Author(s):  
Gezahegn Weldu Woldemariam ◽  
Arus Edo Harka

Land use and land cover change (LULCC) is a critical factor for enhancing the soil erosion risk and land degradation process in the Wabi Shebelle Basin. Up-to-date spatial and statistical data on basin-wide erosion rates can provide an important basis for planning and conservation of soil and water ecosystems. The objectives of this study were to examine the magnitude of LULCC and consequent changes in the spatial extent of soil erosion risk, and identify priority areas for Soil and Water Conservation (SWC) in the Erer Sub-Basin, Wabi Shebelle Basin, Ethiopia. The soil loss rates were estimated using an empirical prediction model of the Revised Universal Soil Loss Equation (RUSLE) outlined in the ArcGIS environment. The estimated total annual actual soil loss at the sub-basin level was 1.01 million tons in 2000 and 1.52 million tons in 2018 with a mean erosion rate of 75.85 t ha−1 y−1 and 107.07 t ha−1 y−1, respectively. The most extensive soil loss rates were estimated in croplands and bare land cover, with a mean soil loss rate of 37.60 t ha−1 y−1 and 15.78 t ha−1 y−1, respectively. The soil erosion risk has increased by 18.28% of the total area, and decreased by 15.93%, showing that the overall soil erosion situation is worsening in the study area. We determined SWC priority areas using a Multi Criteria Decision Rule (MCDR) approach, indicating that the top three levels identified for intense SWC account for about 2.50%, 2.38%, and 2.14%, respectively. These priority levels are typically situated along the steep slopes in Babile, Fedis, Fik, Gursum, Gola Oda, Haramaya, Jarso, and Kombolcha districts that need emergency SWC measures.


2013 ◽  
Vol 26 (6) ◽  
pp. 565-573 ◽  
Author(s):  
Pablo Ochoa-Cueva ◽  
Andreas Fries ◽  
Pilar Montesinos ◽  
Juan A. Rodríguez-Díaz ◽  
Jan Boll

Author(s):  
Jinzhu Jiu ◽  
Hongjuan Wu ◽  
Sen Li

The Three Gorges Reservoir Region (TGRR) in China is an ecologically and politically important region experiencing rapid land use/cover changes and prone to many environment hazards related to soil erosion. In the present study, we: (1) estimated recent changes in the risk pattern of soil erosion in the TGRR, (2) analysed how the changes in soil erosion risks could be associated with land use and land cover change, and (3) examined whether the interactions between urbanisation and natural resource management practices may exert impacts on the risks. Our results indicated a declining trend of soil erosion risk from 14.7 × 106 t in 2000 to 1.10 × 106 t in 2015, with the most risky areas being in the central and north TGRR. Increase in the water surface of the Yangtze River (by 61.8%, as a consequence of water level rise following the construction of the Three Gorges Dam), was found to be negatively associated with soil erosion risk. Afforestation (with measured increase in forest extent by 690 km2 and improvement of NDVI by 8.2%) in the TGRR was associated with positive soil erosion risk mitigation. An interaction between urbanisation (urban extant increased by 300 km2) and vegetation diversification (decreased by 0.01) was identified, through which the effect of vegetation diversification on soil erosion risk was negative in areas having lower urbanisation rates only. Our results highlight the importance of prioritising cross-sectoral policies on soil conservation to balance the trade-offs between urbanisation and natural resource management.


2016 ◽  
Vol 26 (1) ◽  
pp. 90-96 ◽  
Author(s):  
D Pandey ◽  
B P Heyojoo ◽  
H Shahi

Land use and land cover change has immense impact on the global environment and ecosystem. Geospatial technologies are very important for monitoring these changes. This research aims to find out the land use land cover dynamics and drivers of Ambung VDC, Tehrathum district. The Landsat images of the year 1990 and 2013 were used for quantifying the changes. Household survey, key informant interview, focus group discussion, training samples collection and direct field observations were carried out to gather socio-economic and bio-physical data. Supervised classification was performed to prepare land cover maps. Change on land use was calculated by using post classification change detection. During 1990–2013, forest cover was found to have increased by 6.6%, agriculture decreased by 5.9% and others (barren, settlement, grass, rock and water bodies) decreased by 0.7%. The VDC was found to have severe problem of rapid drying of water resources in spite of the increase in forest cover, and so research should be carried out to find out the reason and solve the problem before it is too late.Banko JanakariA Journal of Forestry Information for NepalVol. 26, No. 1, Page:90-96, 2016


2009 ◽  
Vol 23 (1) ◽  
pp. 86
Author(s):  
Beny Harjadi

Soil erosion is crucial problem in India where more than 70% of land in degraded. This study is to establish conservation priorities of the sub watersheds across the entire terrain, and suggest suitable conservation measures. Soil conservation practices are not only from erosion data both qualitative SES (Soil Erosion Status) model and quantitative MMF (Morgan, Morgan and Finney) model erosion, but we have to consider LCC (Land Capability Classification) and LULC (Land Use Land Cover). Study demonstrated the use of RS (Remote Sensing) and GIS (Geographic Information System) in soil erosion risk assessment by deriving soil and vegetation parameters in the erosion models. Sub-watersheds were prioritized based on average soil loss and the area falls under various erosion risk classes for conservation planning. The annual rate of soil loss based on MMF model was classified into five soil erosion risk classes for soil conservation measures. From 11 sub watersheds, for the first priority of the watershed is catchment with the small area and the steep slope. Recommendation for steep areas (classes VI, VII, and VIII) land use allocation should be made to maintain forest functions.


Solid Earth ◽  
2015 ◽  
Vol 6 (4) ◽  
pp. 1247-1257 ◽  
Author(s):  
H. Biswas ◽  
A. Raizada ◽  
D. Mandal ◽  
S. Kumar ◽  
S. Srinivas ◽  
...  

Abstract. This paper attempts to provide information for policymakers and soil conservation planners in the form of district-wise soil erosion risk (SER) maps prepared for the state of Telangana, India. The SER values for each district were computed by extracting the information on grid-wise soil erosion and soil loss tolerance limit values existing on the country-scale in a GIS environment. The objectives of the study were to (i) identify the areas of the state with a high erosion risk, and (ii) identify areas with an urgent need of conservation measures. The results reveal that around 69 % of the state has a negligible risk of soil erosion above the tolerance limits, and does not call for immediate soil conservation measures. The remaining area (2.17 M ha) requires conservation planning. Four districts, viz. Adilabad, Warangal, Khammam, and Karimnagar are the most risk-prone with more than one-quarter of their total geographical areas showing net positive SER values. In order to obtain a clearer picture and categorize the districts based on their extent of vulnerability, weighted erosion risk values were computed. Adilabad, Warangal, and Khammam were identified as the worst-affected districts in terms of soil erosion, and therefore are in need of immediate attention of natural resource conservation.


2015 ◽  
Vol 7 (2) ◽  
pp. 1611-1637 ◽  
Author(s):  
H. Biswas ◽  
A. Raizada ◽  
D. Mandal ◽  
S. Kumar ◽  
S. Srinivas ◽  
...  

Abstract. This paper attempts to provide information for policy makers and soil conservation planners in the form of district-wise soil erosion risk (SER) maps prepared for the state of Telengana, India. The SER values for each district were computed by extracting the information on grid-wise soil erosion and soil loss tolerance limit values existing on the country-scale in a GIS environment. The objectives of the study were to (i) identify the areas of the state with high erosion risk, and (ii) identify areas with urgent needs of conservation measures. The results reveal that around 69% of the state has negligible risk of soil erosion above the tolerance limits, and does not call for immediate soil conservation measures. The remaining area (2.17M ha) requires conservation planning. Four districts, viz. Adilabad, Warangal, Khammam and Karimnagar are the most risk prone with more than one-fourth of their total geographical areas showing net positive SER values. In order to obtain a clearer picture and categorize the districts based on their extent of vulnerability, the Weighted Erosion Risk values were computed. Adilabad, Warangal and Khammam were identified as the worst-affected districts in terms of soil erosion and therefore need immediate attention for natural resource conservation.


Sign in / Sign up

Export Citation Format

Share Document