scholarly journals Solving the Multi-Depot Green Vehicle Routing Problem by a Hybrid Evolutionary Algorithm

2020 ◽  
Vol 12 (5) ◽  
pp. 2127
Author(s):  
Bo Peng ◽  
Lifan Wu ◽  
Yuxin Yi ◽  
Xiding Chen

The growing concerns about human pollution has motivated practitioners and researchers to focus on the environmental and social impacts of logistics and supply chains. In this paper, we consider the environmental impact of carbon dioxide emission on a vehicle routing problem with multiple depots. We present a hybrid evolutionary algorithm (HEA) to tackle it by combining a variable neighborhood search and an evolutionary algorithm. The proposed hybrid evolutionary algorithm includes several distinct features such as multiple neighborhood operators, a route-based crossover operator, and a distance- and quality-based population updating strategy. The results from our numerical experiments confirm the effectiveness and superiority of the proposed HEA in comparison with the best-performing methods in the literature and the public exact optimization solver CPLEX. Furthermore, an important aspect of the HEA is studied to assess its effect on the performance of the HEA.

2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Shengyang Jia ◽  
Lei Deng ◽  
Quanwu Zhao ◽  
Yunkai Chen

<p style='text-indent:20px;'>In considering route optimization from multiple distribution centers called depots via some intermediate facilities called satellites to final customers with multiple commodities request, we introduce the Multi-Commodity Two-Echelon Vehicle Routing Problem with Satellite Synchronization (MC-2E-VRPSS). The MC-2E-VRPSS involves the transportation from multiple depots to satellites on the first echelon and the deliveries from satellites to final customers on the second echelon. The MC-2E-VRPSS integrates satellite synchronization constraints and time window constraints for satellites on the two-echelon network and aims to determine cost-minimizing routes for the two echelons. The satellite synchronization constraints which trucks from the multiple depots to some satellites need to be coordinated guarantee the efficiency of the second echelon network. In this study, we develop a mixed-integer programming model for the MC-2E-VRPSS. For validating the model formulation, we conduct the computational experiments on a set of small-scale instances using GUROBI and an adaptive large neighborhood search (ALNS) heuristic which we develop for the problem. Furthermore, the computation experiments for evaluating the applicability of the ALNS heuristic compared with large neighborhood search (LNS) on a set of large-scale instances are also conducted, which proved the effectiveness of the ALNS.</p>


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ha-Bang Ban ◽  
Phuong Khanh Nguyen

AbstractThe Asymmetric Distance-Constrained Vehicle Routing Problem (ADVRP) is NP-hard as it is a natural extension of the NP-hard Vehicle Routing Problem. In ADVRP problem, each customer is visited exactly once by a vehicle; every tour starts and ends at a depot; and the traveled distance by each vehicle is not allowed to exceed a predetermined limit. We propose a hybrid metaheuristic algorithm combining the Randomized Variable Neighborhood Search (RVNS) and the Tabu Search (TS) to solve the problem. The combination of multiple neighborhoods and tabu mechanism is used for their capacity to escape local optima while exploring the solution space. Furthermore, the intensification and diversification phases are also included to deliver optimized and diversified solutions. Extensive numerical experiments and comparisons with all the state-of-the-art algorithms show that the proposed method is highly competitive in terms of solution quality and computation time, providing new best solutions for a number of instances.


2009 ◽  
Vol 195 (3) ◽  
pp. 761-769 ◽  
Author(s):  
Nicolas Jozefowiez ◽  
Frédéric Semet ◽  
El-Ghazali Talbi

Sign in / Sign up

Export Citation Format

Share Document