scholarly journals Spatio-Temporal Variations of CO2 Emission from Energy Consumption in the Yangtze River Delta Region of China and Its Relationship with Nighttime Land Surface Temperature

2020 ◽  
Vol 12 (20) ◽  
pp. 8388
Author(s):  
Juchao Zhao ◽  
Shaohua Zhang ◽  
Kun Yang ◽  
Yanhui Zhu ◽  
Yuling Ma

The rapid development of industrialization and urbanization has resulted in a large amount of carbon dioxide (CO2) emissions, which are closely related to the long-term stability of urban surface temperature and the sustainable development of cities in the future. However, there is still a lack of research on the temporal and spatial changes of CO2 emissions in long-term series and their relationship with land surface temperature. In this study, Defense Meteorological Satellite Program’s Operational Linescan System (DMSP/OLS) data, Suomi National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) composite data, energy consumption statistics data and nighttime land surface temperature are selected to realize the spatial informatization of long-term series CO2 emissions in the Yangtze River Delta region, which reveals the spatial and temporal dynamic characteristics of CO2 emissions, spatial autocorrelation distribution patterns and their impacts on nighttime land surface temperature. According to the results, CO2 emissions in the Yangtze River Delta region show an obvious upward trend from 2000 to 2017, with an average annual growth rate of 6.26%, but the growth rate is gradually slowing down. In terms of spatial distribution, the CO2 emissions in that region have significant regional differences. Shanghai, Suzhou and their neighboring cities are the main distribution areas with high CO2 emissions and obvious patch distribution patterns. From the perspective of spatial trend, the areas whose CO2 emissions are of significant growth, relatively significant growth and extremely significant growth account for 8.78%, 4.84% and 0.58%, respectively, with a spatial pattern of increase in the east and no big change in the west. From the perspective of spatial autocorrelation, the global spatial autocorrelation index of CO2 emissions in the Yangtze River Delta region in the past 18 years has been greater than 0.66 (p < 0.01), which displays significant positive spatial autocorrelation characteristics, and the spatial agglomeration degree of CO2 emissions continues to increase from 2000 to 2010. From 2000 to 2017, the nighttime land surface temperature in that region showed a warming trend, and the areas where CO2 emissions are positively correlated with nighttime land surface temperature account for 88.98%. The increased CO2 emissions lead to, to a large extent, the rise of nighttime land surface temperature. The research results have important theoretical and practical significance for the Yangtze River Delta region to formulate a regional emission reduction strategy.

2021 ◽  
Vol 13 (16) ◽  
pp. 8880
Author(s):  
Tong Wu ◽  
Lucang Wang ◽  
Haiyang Liu

Advancements in the integrated development of the Yangtze River Delta are changing the structure and function of the surface thermal landscape and triggering a series of ecological and environmental problems. Therefore, examining the spatiotemporal differentiation characteristics and evolution laws of this land surface thermal landscape has great theoretical and practical significance in the context of optimizing functional zoning and realizing the harmonious development of the economy, society and nature. The paper uses the LST (land surface temperature) data retrieved by MODIS (MOD11A2) remote sensing satellites in 2007, 2010, 2013, 2016 and 2019 to extract a land surface thermal rating map of the Yangtze River Delta region, and to analyze the spatiotemporal differentiation in the land surface thermal landscape, combining of the land surface thermal landscape strip profile and thermal landscape pattern indices. The results show that the LST in the Yangtze River Delta region has increased in the past 12 years, the proportion of middle-, sub-high- and high-temperature zones increased by 33.42%, and the high-temperature zone has gradually extended into inland areas. The high-temperature zones in the areas surrounding core cities such as Shanghai, Nanjing, and Hangzhou have expanded. The corridor effect of thermal changes on the surface is obvious. The degree of aggregation in the lower-temperature areas has gradually decreased. The degree of aggregation in the higher-temperature regions has increased. The patch types of thermal landscape pattern increase, and the distribution of landscape area among various types tends to be even. this trend is most significant in optimized development region.


Sign in / Sign up

Export Citation Format

Share Document