industrial energy
Recently Published Documents


TOTAL DOCUMENTS

858
(FIVE YEARS 229)

H-INDEX

48
(FIVE YEARS 11)

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 554
Author(s):  
Ardak Akhatova ◽  
Lukas Kranzl ◽  
Fabian Schipfer ◽  
Charitha Buddhika Heendeniya

There is an increased interest in the district-scale energy transition within interdisciplinary research community. Agent-based modelling presents a suitable approach to address variety of questions related to policies, technologies, processes, and the different stakeholder roles that can foster such transition. However, it is a largely complex and versatile methodology which hinders its broader uptake by researchers as well as improved results. This state-of-the-art review focuses on the application of agent-based modelling for exploring policy interventions that facilitate the decarbonisation (i.e., energy transition) of districts and neighbourhoods while considering stakeholders’ social characteristics and interactions. We systematically select and analyse peer-reviewed literature and discuss the key modelling aspects, such as model purpose, agents and decision-making logic, spatial and temporal aspects, and empirical grounding. The analysis reveals that the most established agent-based models’ focus on innovation diffusion (e.g., adoption of solar panels) and dissemination of energy-saving behaviour among a group of buildings in urban areas. We see a considerable gap in exploring the decisions and interactions of agents other than residential households, such as commercial and even industrial energy consumers (and prosumers). Moreover, measures such as building retrofits and conversion to district energy systems involve many stakeholders and complex interactions between them that up to now have hardly been represented in the agent-based modelling environment. Hence, this work contributes to better understanding and further improving the research on transition towards decarbonised society.


2022 ◽  
Vol 14 (2) ◽  
pp. 856
Author(s):  
Qianqian Yang ◽  
Yishao Shi ◽  
Liangliang Zhou

Industrial centralization is an important policy choice in the industrial economy era. The purpose of this paper is to evaluate the overall performance and the influential effects of the industrial centralization strategy in the suburbs of Shanghai. The results show that (1) the strategy of industrial concentration in the suburbs of Shanghai effectively promoted economic growth; (2) on different spatial scales, there are visible differences in the impact of industrial concentration on the performance of industrial land; (3) industrial concentration has significantly improved industrial energy utilization efficiency; and (4) industrial concentration has narrowed the gap of economic development among the suburbs, but it has not resulted in a corresponding narrowing of the urban-rural gap. The main recommendations are to pay more attention to the high-end and centralization of urban industries in the central city, promote the interactive development of manufacturing and service industries as well as the integrated development of industry and city, moderately control the scale and speed of industrial suburbanization and residential suburbanization, promote the transformation of the traditional industrial land into “industry + R&D + business and office + exhibition” and further narrow the income gap between and within regions.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 463
Author(s):  
Charles Bronzo B. Farias ◽  
Rita de Cássia F. Soares da Silva ◽  
Fabíola Carolina G. Almeida ◽  
Attilio Converti ◽  
Valdemir A. dos Santos ◽  
...  

In the industries across the petroleum chain and those involved in energy generation, the use of petroderivatives as fuel oils is common. To clean parts, equipment and environments contaminated by hydrocarbons, they use expensive, toxic products, bringing risks to the environment as well as to workers’ health. Thus, the aim of this study was to check the stability of a biodetergent prepared using atoxic substances for large-scale production and industrial energy sector application. The relationship between volume (4 to 10 L) and stirring time (5 to 10 min) of the formulation at 3200 rpm and 80 °C was evaluated. The hydrophilic lipophilic balance (HLB), long-term stability (365 days), toxicity and efficiency of low-sulfur, viscous fuel oil removal from metal pieces and floors were investigated. The interaction among operating conditions was shown to influence the features of the product, which achieved approximately 100% stability after a stirring time of 7 min. The emulsion HBL index varied between 4.3 and 11.0. The biodetergent maintained its physicochemical properties during its 365 days of storage and showed high efficiency, removing 100% of the OCB1 impregnated on the metallic surfaces and floors tested. The formulation showed reliability in scale up when submitted to the study of physicochemical factors in the productive process, and safe application, by reducing risks for workers’ health and environment.


2022 ◽  
Vol 2152 (1) ◽  
pp. 012050
Author(s):  
Ping Cao

Abstract With the rapid growth and development of the world and global economy, human material and living standards continue to improve and improve, people’s demand for renewable energy has become more and more, and many traditional energy sources, such as oil, natural gas, coal, etc., due to their limited storage capacity, serious environmental pollution during mining, and many other reasons, no longer fully meet the human demand for sustainable use of renewable energy in our era. Therefore, the development of a clean industrial energy is gradually becoming an important solution for contemporary Chinese enterprises to solve the problem of clean industrial energy utilization. Solar cells are an inexhaustible clean and green energy. It has great research and development and application value. It has attracted extensive research attention from social scientists. Among them, solar energy dye-sensitized battery solar plastic cells mainly have The dye process is simple, the cost of the preparation process is low, the conversion efficiency is high, and the large-scale production can be achieved throughout the year. Therefore, it has gradually become a hot spot in my country’s solar power battery technology research in recent years. This article aims to study the preparation and performance of (nickel) substrate nano-ZnO dye-sensitized solar cells. The optimal conditions for the synthesis of ZnO and the influence of different reaction conditions on the growth of ZnO were explored, and the growth mechanism of ZnO was speculated. The photoelectric synthesis catalytic conditions of the microspheres agglomerated between different sizes of ZnO are explored, and the direct influence of the small dye-sensitized micro-solar synthesis cells currently used in the synthesis on the synthesis of small dye-sensitized micro-solar cells is directly affected. Laboratory research results show that in order to use more reactive dyes for dye adsorption in order to improve the efficiency of the conversion using dye sensitizers and solar fuel cells, the dye film needs to pass through ZnO and be adsorbed by the dye at the same time. The morphological structure should not be too dense and the film should not be too thick; at the same time, the absorption of the dye film should be proportional to the overall coating thickness of the film. Therefore, the overall thickness of the film should be moderate when used in ZnO.


Sign in / Sign up

Export Citation Format

Share Document