scholarly journals Latent Heat Phase Change Heat Transfer of a Nanoliquid with Nano–Encapsulated Phase Change Materials in a Wavy-Wall Enclosure with an Active Rotating Cylinder

2021 ◽  
Vol 13 (5) ◽  
pp. 2590
Author(s):  
S. A. M. Mehryan ◽  
Kaamran Raahemifar ◽  
Leila Sasani Gargari ◽  
Ahmad Hajjar ◽  
Mohamad El Kadri ◽  
...  

A Nano-Encapsulated Phase-Change Material (NEPCM) suspension is made of nanoparticles containing a Phase Change Material in their core and dispersed in a fluid. These particles can contribute to thermal energy storage and heat transfer by their latent heat of phase change as moving with the host fluid. Thus, such novel nanoliquids are promising for applications in waste heat recovery and thermal energy storage systems. In the present research, the mixed convection of NEPCM suspensions was addressed in a wavy wall cavity containing a rotating solid cylinder. As the nanoparticles move with the liquid, they undergo a phase change and transfer the latent heat. The phase change of nanoparticles was considered as temperature-dependent heat capacity. The governing equations of mass, momentum, and energy conservation were presented as partial differential equations. Then, the governing equations were converted to a non-dimensional form to generalize the solution, and solved by the finite element method. The influence of control parameters such as volume concentration of nanoparticles, fusion temperature of nanoparticles, Stefan number, wall undulations number, and as well as the cylinder size, angular rotation, and thermal conductivities was addressed on the heat transfer in the enclosure. The wall undulation number induces a remarkable change in the Nusselt number. There are optimum fusion temperatures for nanoparticles, which could maximize the heat transfer rate. The increase of the latent heat of nanoparticles (a decline of Stefan number) boosts the heat transfer advantage of employing the phase change particles.

Author(s):  
Mark R. Campbell ◽  
Marc Newmarker ◽  
Nathaniel Lewis ◽  
Christopher T. George ◽  
Gilbert Cohen

Thermal energy storage systems designed to use phase change material can benefit from accounting for the reduction in heat transfer that results from fouling on the heat transfer surface or employing a system to minimize the amount of build-up on the heat transfer surface. This paper describes the modeling and design of a modular latent heat thermal energy storage system that can use an internal heat exchanger and a mechanical system to increase heat transfer to and from the phase change material. Theoretical heat transfer modeling of a 100 kWht storage system was performed, candidate phase change materials were tested, and mechanical material removal experiments were conducted. The results of this work led to a design that is in construction and will be operated in the future. The system is predicted to be capable of reaching 93% round trip efficiency while providing 2 hours of discharge at a nearly constant temperature.


Author(s):  
Pouyan Talebizadeh Sardari ◽  
Gavin S Walker ◽  
Mark Gillott ◽  
David Grant ◽  
Donald Giddings

The aim of this paper is to study the influence of enclosure size in latent heat thermal energy storage systems embedded in a porous medium for domestic usage of latent heat thermal energy storage heat exchangers. A 2-D rectangular enclosure is considered as the computational domain to study the heat transfer improvement for a phase change material embedded in a copper foam considering a constant heat flux from the bottom surface. Different dimensions of the composite system are examined compared with a system without a porous medium. The thermal non-equilibrium model with enthalpy-porosity method is employed for the effects of porous medium and phase change in the governing equations, respectively. The phase change material liquid fraction, temperature, velocity, stream lines and the rate of heat transfer are studied. The presence of a porous medium increases the heat transfer significantly, but the improvement in melting performance is strongly related to the system's dimensions. For the dimensions of 200 × 100 mm (W × H), the melting time of porous-phase change material with the porosity of 95% is reduced by 17% compared with phase change material-only system. For the same storage volume and total amount of thermal energy added, the melting time is lower for the system with a lower height, especially for the phase change material-only system due to a higher area of the input heat. The non-dimensional analysis results in curve-fitting correlations between the liquid fraction and Fo.Ste.Ra −0.02 for rectangular latent heat thermal energy storage systems for both phase change material-only and composite-phase change material systems within the parameter range of 1.16 <  Ste < 37.13, 0 <  Fo < 1.5, 2.9 × 104 <  Ra < 9.5 × 108, 0 <  L f < 1 and 0 <  Fo.Ste.Ra −0.02 < 0.57. Over a range of system's volume, heat flux and surface area of the input heat flux, the benefit of composite phase change material is variable and, in some cases, is negligible compared with the phase change material-only system.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6176 ◽  
Author(s):  
Hamidreza Behi ◽  
Mohammadreza Behi ◽  
Ali Ghanbarpour ◽  
Danial Karimi ◽  
Aryan Azad ◽  
...  

Usage of phase change materials’ (PCMs) latent heat has been investigated as a promising method for thermal energy storage applications. However, one of the most common disadvantages of using latent heat thermal energy storage (LHTES) is the low thermal conductivity of PCMs. This issue affects the rate of energy storage (charging/discharging) in PCMs. Many researchers have proposed different methods to cope with this problem in thermal energy storage. In this paper, a tubular heat pipe as a super heat conductor to increase the charging/discharging rate was investigated. The temperature of PCM, liquid fraction observations, and charging and discharging rates are reported. Heat pipe effectiveness was defined and used to quantify the relative performance of heat pipe-assisted PCM storage systems. Both experimental and numerical investigations were performed to determine the efficiency of the system in thermal storage enhancement. The proposed system in the charging/discharging process significantly improved the energy transfer between a water bath and the PCM in the working temperature range of 50 °C to 70 °C.


2019 ◽  
Vol 116 ◽  
pp. 00038 ◽  
Author(s):  
Maria K. Koukou ◽  
Michail Gr. Vrachopoulos ◽  
George Dogkas ◽  
Christos Pagkalos ◽  
Kostas Lymperis ◽  
...  

A prototype Latent Heat Thermal Energy Storage (LHTES) unit has been designed, constructed, and experimentally analysed for its thermal storage performance under different operational conditions considering heating application and exploiting solar and geothermal energy. The system consists of a rectangular tank filled with Phase Change Material (PCM) and a finned tube staggered Heat Exchanger (HE) while water is used as Heat Transfer Fluid (HTF). Different HTF inlet temperatures and flow rates were tested to find out their effects on LHTES performance. Thermal quantities such as HTF outlet temperature, heat transfer rate, stored energy, were evaluated as a function of the conditions studied. Two commercial organic PCMs were tested A44 and A46. Results indicate that A44 is more efficient during the charging period, taking into account the two energy sources, solar and heat pump. During the discharging process, it exhibits higher storage capacity than A46. Concluding, the developed methodology can be applied to study different PCMs and building applications.


Sign in / Sign up

Export Citation Format

Share Document