scholarly journals Valuation of Ecosystem Services in South Africa, 2001–2019

2021 ◽  
Vol 13 (20) ◽  
pp. 11262
Author(s):  
Mohamed A. M. Abd Elbasit ◽  
Jasper Knight ◽  
Gang Liu ◽  
Majed M. Abu-Zreig ◽  
Rashid Hasaan

Although changes in ecosystems in response to climate and land-use change are known to have implications for the provision of different environmental and ecosystem services, quantifying the economic value of some of these services can be problematic and has not been widely attempted. Here, we used a simplified raster remote sensing model based on MODIS data across South Africa for five different time slices for the period 2001–2019. The aims of the study were to quantify the economic changes in ecosystem services due to land degradation and land-cover changes based on areal values (in USD ha−1 yr−1) for ecosystem services reported in the literature. Results show progressive and systematic changes in land-cover classes across different regions of South Africa for the time period of analysis, which are attributed to climate change. Total ecosystem service values for South Africa change somewhat over time as a result of land-use change, but for 2019 this calculated value is USD 437 billion, which is ~125% of GDP. This is the first estimation of ecosystem service value made for South Africa at the national scale. In detail, changes in land cover over time within each of the nine constituent provinces in South Africa mean that ecosystem service values also change regionally. There is a clear disparity between the provinces with the greatest ecosystem service values when compared to their populations and contribution to GDP. This highlights the potential for untapped ecosystem services to be exploited as a tool for regional sustainable development.

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Workiyie Worie Assefa ◽  
Belachew Getnet Eneyew ◽  
Ayalew Wondie

Abstract Background Even though wetlands are essential in enhancing water quality and providing recreation and entertainment opportunities in urban areas, their values are overlooked by the decision-makers. Underestimation of the economic value of wetland ecosystem services contributes to their continuing deterioration and inevitable loss. Investigating the changes in ecosystem service values (ESV) can provide crucial information for decision-making. This study, therefore, analyzes the temporal and spatial land-use/land-cover (LULC) change patterns over 35 years (1984–2019) intending to evaluate its impact on wetland ecosystem service values in Bahir Dar City, Ethiopia. Estimation and change analyses of ESVs were conducted by employing ArcGIS using LULC inputs of the year 1984, 1994, 2004, 2014, and 2019 with their corresponding global value coefficients that were developed earlier and our own modified value coefficients for the studied landscape. Results The results showed that wetlands and water bodies of the city and its peripheries had decreased by 75.71% (−1618 ha) within 35 years, while built-up area increased by 216.24% (+2599 ha). Cultivated land had increased slightly from 1984 to 1994 and then gradually declined since 1994. Changes in LULC had resulted in a decline of the total ESV. The total ESV had decreased from USD 29.73 × 106 to USD 20.84 × 106 in 35 years. This indicates the loss of nearly USD 8.9 × 106 ESV from 1984 to 2019. A sensitivity analysis suggested the robustness of ESV estimation in the study area. All individual ecosystem services experienced a negative change. However, a greater reduction in ESV was observed for services such as water regulation, waste treatment, and habitats for maintaining biodiversity. The expansion of built-up area of Bahir Dar City was the major factor that contributed to the loss of ESV provided by wetlands. Conclusions The loss of ESV resulting in LULC changes has a negative implication on local climate, waste management, and the livelihoods of the poor community. Thus, interventions should be made for the restoration and sustainable management of wetlands in the urban and peri-urban areas of Bahir Dar City.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5723 ◽  
Author(s):  
Rashieda Davids ◽  
Mathieu Rouget ◽  
Richard Boon ◽  
Debra Roberts

Background Population growth at all scales and rapid rates of urbanization, particularly in the global South, are placing increasing pressure on ecosystems and their ability to provide services essential for human well-being. The spatial consideration of threats to ecosystem services related to changes in land use is necessary in order to avoid undue impacts on society due to the loss or reduced supply of ecosystem services. This study assesses the potential threats of land use change from strategic and local development proposals to ecosystem services in the city of Durban. Methods We analysed the spatial relationship between five categories of ecosystem service hotspots (carbon storage, water yield, sediment retention, nutrient retention and flood attenuation) and urban land use change related to selected strategic planning proposals, development proposals and sand-mining applications in Durban, South Africa (eThekwini Municipality) with a view to determining the consequences for progress towards a more sustainable development path in the city. We identified the potential levels of threat related to habitat destruction or transformation for the five categories of ecosystem services and a subset of 13 ecosystem service hotspots, using GIS spatial analysis tools. Results The results show that on average, should Durban’s strategic development plans be realised, approximately 42% loss of ecosystem service hotspots is expected in the two municipal town-planning regions assessed. With respect to development applications between 2009 and 2012, approximately 36% of all environmental impact assessments and 84% of sand mining applications occurred within ecosystem service hotspots within Durban. Discussion The findings highlight the tension between short-term development pressures and longer-term sustainability goals and confirm that current planning and development proposals pose a threat to ecosystems and their ability to deliver services that support human well-being in Durban. We suggest practical solutions to include ecosystem services into local government decision-making.


Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 173
Author(s):  
Changjun Gu ◽  
Yili Zhang ◽  
Linshan Liu ◽  
Lanhui Li ◽  
Shicheng Li ◽  
...  

Land use and land cover (LULC) changes are regarded as one of the key drivers of ecosystem services degradation, especially in mountain regions where they may provide various ecosystem services to local livelihoods and surrounding areas. Additionally, ecosystems and habitats extend across political boundaries, causing more difficulties for ecosystem conservation. LULC in the Kailash Sacred Landscape (KSL) has undergone obvious changes over the past four decades; however, the spatiotemporal changes of the LULC across the whole of the KSL are still unclear, as well as the effects of LULC changes on ecosystem service values (ESVs). Thus, in this study we analyzed LULC changes across the whole of the KSL between 2000 and 2015 using Google Earth Engine (GEE) and quantified their impacts on ESVs. The greatest loss in LULC was found in forest cover, which decreased from 5443.20 km2 in 2000 to 5003.37 km2 in 2015 and which mainly occurred in KSL-Nepal. Meanwhile, the largest growth was observed in grassland (increased by 548.46 km2), followed by cropland (increased by 346.90 km2), both of which mainly occurred in KSL-Nepal. Further analysis showed that the expansions of cropland were the major drivers of the forest cover change in the KSL. Furthermore, the conversion of cropland to shrub land indicated that farmland abandonment existed in the KSL during the study period. The observed forest degradation directly influenced the ESV changes in the KSL. The total ESVs in the KSL decreased from 36.53 × 108 USD y−1 in 2000 to 35.35 × 108 USD y−1 in 2015. Meanwhile, the ESVs of the forestry areas decreased by 1.34 × 108 USD y−1. This shows that the decrease of ESVs in forestry was the primary cause to the loss of total ESVs and also of the high elasticity. Our findings show that even small changes to the LULC, especially in forestry areas, are noteworthy as they could induce a strong ESV response.


Author(s):  
Negasi Solomon ◽  
Alcade C. Segnon ◽  
Emiru Birhane

Despite their importance as sources of ecosystem services supporting the livelihoods of millions of people, forest ecosystems have been changing into other land use systems over the past decades across the world. While forest cover change dynamics have been widely documented in various ecological systems, how these changes affect ecosystem service values has received limited attention. In this study we assessed the impact of land-use/land-cover dynamics on ecosystem service values in dry Afromontane forest in Northern Ethiopia. We estimated ecosystem service values and their changes based on the benefit transfer method using land cover data of the years 1985, 2000, and 2016 with their corresponding locally valid value coefficients and from the Ecosystem service valuation database. The total ecosystem service values of the whole study area were about USD 16.6, 19.0, and 18.1 million in 1985, 2000, and 2016, respectively. The analyses indicated an increase in ecosystem service values from 1985 to 2000 and a decrease in ecosystem service values from 2000 to 2016. Similarly, the contribution of specific ecosystem services increased in the first study period and decreased in the second study period. The findings highlight how forest cover dynamics can be translated into changes in ecosystem service values in dry Afromontane forest ecosystems in Northern Ethiopia and showed how specific ecosystem services contributed to the observed trends. The findings also illustrated the temporal heterogeneity in the impacts of land-use/land-cover dynamics on values of ecosystem services. The findings can serve as crucial inputs for policy and strategy formulations for the sustainable use and management of forest resources and can also guide the allocation of limited resources among competing demands to safeguard the ecosystems that offer the best-valued services.


2020 ◽  
Vol 12 (24) ◽  
pp. 10234
Author(s):  
Javier Rodrigo-Ilarri ◽  
Claudia P. Romero ◽  
María-Elena Rodrigo-Clavero

For the first time, this paper introduces and describes a new Weighted Environmental Index (WEI) based on object-oriented models and GIS data. The index has been designed to integrate all the available information from extensive and detailed GIS databases. After the conceptual definition of the index has been justified, two applications for the regional and local scales of the WEI are shown. The applications analyze the evolution over time of the environmental value from land-use change for two different case studies in Spain: the Valencian Region and the L’Alcora municipality. Data have been obtained from the Spanish Land Occupation Information System (SIOSE) public database and integrate GIS information about land use/land cover on an extensive, high-detailed scale. Results demonstrate the application of the WEI to real case studies and the importance of integrating statistical analysis of WEI evolution over time to arrive at a better understanding of the socio-economic and environmental processes that induce land-use change.


2012 ◽  
Vol 518-523 ◽  
pp. 5116-5120
Author(s):  
Pei Ji Shi ◽  
Xue Bin Zhang ◽  
Jun Luo ◽  
Xue Min Zhang

Based on the detailed survey of land use change in Shiyang river basin, referencing Costanza, and Xie et al’ research results of the value of ecosystem services, this article probed the variation of land use and value of ecosystem service in Wuwei region. The results are: from 1997 to 2006, the area of woodland, construction land and garden land are increasing, while farmland, grassland, water and unused land are continuing to decrease. Land-use intensity is gradually increasing, the land use pattern towards to a centralized style. The values of ecosystem services are overall upward, and change faster than ever. The main part of the value of ecosystem service is constituted by the value of grassland, woodland and farmland. So it’s important to control the expansion of urban construction, strength the protection of the water, restore and enhance regional ecosystem services in the future.


2018 ◽  
Vol 3 (2) ◽  
pp. 11
Author(s):  
Robby Irsan ◽  
Luthfi Muta'ali ◽  
S Sudrajat

Entikong Region is located in Sanggau Regency, West Kalimantan Province, Indonesia, which is directly adjacent to Malaysia. Land use in the Border Area, which is massive and irregular, results in environmental degradation, deculturization, and lack of living standards of the community. High population growth in the border areas leads to excessive use of natural resources, and used land is not appropriately allocated. The land has limited function, and if the demand for the land is greater than the carrying capacity, there will be an imbalance that results in land degradation and its environment. The purpose of this study is to identify the type and extent of land function switch, analyze provider services as part of the Land Support Capacity Ecosystem services, and identify the Accuracy of Image Interpretation. The results showed that the increasing area of massive land use comes from a mixed plantation in 2017 increased by 60.6% of the total area of Entikong District. Degradation occurs in primary forest land use component which is only 18.6% of Entikong's total area in 2017. This indicates that the use of mixed plantation land acquires the protected forest, with many palm, rubber, and pepper. Similarly, the percentage of accuracy test from the interpretation result reaches 83.33% from 42 sample points in accordance with the real conditions. The Value of Clean Water Ecosystem Service Providers in 2011 was 0.36 and was 0.33 in 2017. Then within the period of almost 7 years, it is decreased by 0.03. Thus, the Ecosystem Service Index of clean water providers has a value less than 1, it means the function of the area as a provider of clean water is very small. Similarly, the Provider Ecosystem Services Index for Foodstuffs, the Value of Food Ecosystem Services Index in 2011 was 0.32 and was 0.31 in 2017, then within the nearly 7-year period, it is decreased by 0.01. The ecosystem services index as a food supply provider for the Entikong border area is very low (less than 1) which means the carrying capacity of the environment is not good enough for supplying food needs in Entikong. This indicates that there is a reduction in the availability of environmental services, and if it continues, then Environmental Assets declines sharply and services derived from nature will be lost or will be expensive in the near future. Thus, optimization and revitalization of land use are necessary by applying various policies related to development in the border area in Entikong District. Keywords: Borders, Land Use, Ecosystem Provider Services.   References Admadhani, D. N., Hajil, A. H. S., & Susanawati, L. D. (2013). Analysis of Water Supply and Water Demand for Carrying Capacity Assessment ( Case Study of Malang ). Journal of Natural Resources and Environment. Asdak, C., & Salim, H. (2006). Water Resource Capacity As a Spatial Planning Consideration. Journal of Environmental Engineering P3TL-BPPT. Ernan Rustiadi, Sunsus Saefulhakim, D. R. P. (2011). Planning and Regional Development. Restpent Press. Ghozali. (2013). Referral of Land Use Utilization Through Ecological Footprint in Gresik Regency. Territory and Environment, 1 No.1, 67–78. Hamidy, Z. (2003). Land Cover Change, Composition, and Life Type in Suakaidupan Cikepuh. Faculty of Forestry, IPB. Muta’ali, L. (2015). Regional Analysis Techniques For Regional Planning, Spatial Planning, and Environment (Februari). Yogyakarta: Faculty of Geography UGM. National Standardization Department. (2010). Classification of Land Cover. Purwadhi. (2008). Introduction Remote Sensing Imagery Interpretation. Semarang: LAPAN. Riqqi, A. (2014). Design Concept Techniques Determination of Supporting Capacity and Capacity of the National Environment and Islands / Islands And Provinces. Bali: KLH. Saripin, I. (2003). Identify Land Use Using Landsat TM Imagery. Agricultural Engineering Bulletin. Varika. (2015). Monitoring of Ecosystem Service-Based Ecotourism (Recreation and Ecotourism) Capacity in 2000 and 2015 Using Landsat Image in Badung Regency, Bali. Viska. (2012). Land Use Direction in Batu City Based on Ecological Ecosystem Approach. Pomits Technique, 1 No.1, 1–6.    


2021 ◽  
Vol 20 (1) ◽  
pp. 1-16
Author(s):  
Vo Thanh Son ◽  
◽  
Luu The Anh ◽  
Dao Minh Truong ◽  
Trong Dai Ly ◽  
...  

Assessment of ecosystem services is vital for successful natural resource allocation; however, these have been less studied within Vietnam. This study estimated the ecosystem services value (ESV) and its change in Cham Chu nature reserve, Vietnam using a benefit transfer method. Ecosystem service values estimation and trend analyses were carried out based on land use and land cover datasets from 1986, 1998, 2007, and 2017, with their corresponding global value coefficients. The results revealed that the total value of ecosystem services in Cham Chu was approximately 64.4, 63.9, 60.7, and 63.4 million USD in 1986, 1998, 2007, and 2017, respectively. Changes have also occurred in the values of individual ecosystem service functions. From 1986 to 2017, ecosystem service functions showed significant decreases in gas regulation, pollination, biological control, water regulation, water supply, and food production of 62.9%, 51.2%, 44.4%, 24.7%, 23.1%, and 13.0%, respectively. We conclude that the loss of ESV is a result of ecological deterioration in the studied landscape, and we propose further research to examine future solutions and establish action strategies. In summary, the research approach methodology developed can be used by land managers and planners in Vietnam as a guideline to estimate the importance of ecosystem services in Vietnam.


2020 ◽  
Vol 12 (24) ◽  
pp. 4048
Author(s):  
Yrneh Ulloa-Torrealba ◽  
Reinhold Stahlmann ◽  
Martin Wegmann ◽  
Thomas Koellner

The monitoring of land cover and land use change is critical for assessing the provision of ecosystem services. One of the sources for long-term land cover change quantification is through the classification of historical and/or current maps. Little research has been done on historical maps using Object-Based Image Analysis (OBIA). This study applied an object-based classification using eCognition tool for analyzing the land cover based on historical maps in the Main river catchment, Upper Franconia, Germany. This allowed land use change analysis between the 1850s and 2015, a time span which covers the phase of industrialization of landscapes in central Europe. The results show a strong increase in urban area by 2600%, a severe loss of cropland (−24%), a moderate reduction in meadows (−4%), and a small gain in forests (+4%). The method proved useful for the application on historical maps due to the ability of the software to create semantic objects. The confusion matrix shows an overall accuracy of 82% for the automatic classification compared to manual reclassification considering all 17 sample tiles. The minimum overall accuracy was 65% for historical maps of poor quality and the maximum was 91% for very high-quality ones. Although accuracy is between high and moderate, coarse land cover patterns in the past and trends in land cover change can be analyzed. We conclude that such long-term analysis of land cover is a prerequisite for quantifying long-term changes in ecosystem services.


Sign in / Sign up

Export Citation Format

Share Document