scholarly journals The Status of Embodied Carbon in Building Practice and Research in the United States: A Systematic Investigation

2021 ◽  
Vol 13 (23) ◽  
pp. 12961
Author(s):  
Ming Hu ◽  
Nora Wang Esram

The building construction industry accounts for 5% of global energy use and 10% of global greenhouse gas (GHG) emissions. A primary source of these emissions is the manufacture of building construction materials such as steel, cement, and glass. As aggressive building energy codes push new construction towards net-zero-energy and net-zero-carbon operations, corresponding efforts to reduce embodied energy and carbon from building construction materials must be pursued to achieve the decarbonization goals of the building sector. In the past few decades, progressive building energy codes as well as the underlying research on reducing the operational energy and its related greenhouse gas emissions have stimulated changes of practice in building design and operation. In contrast, strategies to reduce embodied carbon in the substitute remaining life-cycle stages of a building are less defined and studied. The selection of building materials and systems is largely unregulated, as long as minimum health, safety, and performance standards are met. In addition, it is unclear whether we have adequate knowledge infrastructure to incorporate embodied carbon into national model codes. This study provides a comprehensive review of the current state of knowledge of existing methods, databases, and tools on embodied carbon studies, and identifies the knowledge gaps. It provides a basis for the governments, academia, industry, and other institutes to collaboratively fill in these gaps and develop standards and codes to decarbonize buildings and their interface with other sectors.

Author(s):  
George A. Mertz ◽  
Gregory S. Raffio ◽  
Kelly Kissock

Environmental and resource limitations provide increased motivation for design of net-zero energy or net-zero CO2 buildings. The optimum building design will have the lowest lifecycle cost. This paper describes a method of performing and comparing lifecycle costs for standard, CO2-neutral and net-zero energy buildings. Costs of source energy are calculated based on the cost of photovoltaic systems, tradable renewable certificates, CO2 credits and conventional energy. Building energy simulation is used to determine building energy use. A case study is conducted on a proposed net-zero energy house. The paper identifies the least-cost net-zero energy house, the least-cost CO2 neutral house, and the overall least-cost house. The methodology can be generalized to different climates and buildings. The method and results may be of interest to builders, developers, city planners, or organizations managing multiple buildings.


2018 ◽  
Vol 10 (12) ◽  
pp. 4688
Author(s):  
Marina Nikolić Topalović ◽  
Milenko Stanković ◽  
Goran Ćirović ◽  
Dragan Pamučar

Research was conducted to indicate the impact of the increased flow of thermal insulation materials on the environment due to the implementation of the new regulations on energy efficiency of buildings. The regulations on energy efficiency of buildings in Serbia came into force on 30 September 2012 for all new buildings as well as for buildings in the process of rehabilitation and reconstruction. For that purpose, the carbon footprint was analyzed in three scenarios (BS, S1 and S2) for which the quantities of construction materials and processes were calculated. The life cycle analysis (LCA), which is the basis for analyzing the carbon life cycle (LCACO2), was used in this study. Carbon Calculator was used for measuring carbon footprint, and URSA program to calculate the operational energy. This study was done in two phases. In Phase 1, the embodied carbon was measured to evaluate short-term effects of the implementation of the new regulations. Phase 2 included the first 10 years of building exploitation to evaluate the long-term effects of the new regulations. The analysis was done for the period of 10 years, further adjustments to the regulations regarding energy efficiency of the buildings in Serbia are expected in accordance with EU directives. The study shows that, in the short-run, Scenario BS has the lowest embodied carbon. In the long-run, after 3.66 years, Scenario S2 becomes a better option regarding the impact on the environment. The study reveals the necessity to include embodied carbon together with the whole life carbon to estimation the impact of a building on the environment.


2018 ◽  
Vol 191 ◽  
pp. 127-134 ◽  
Author(s):  
Meredydd Evans ◽  
Sha Yu ◽  
Aaron Staniszewski ◽  
Luting Jin ◽  
Artur Denysenko

Sign in / Sign up

Export Citation Format

Share Document