ASME 2007 Energy Sustainability Conference
Latest Publications


TOTAL DOCUMENTS

135
(FIVE YEARS 0)

H-INDEX

7
(FIVE YEARS 0)

Published By ASMEDC

0791847977, 079183798x

Author(s):  
Hany A. Al-Ansary

Cooling turbine inlet air is a proven method of increasing turbine power output, especially during peak summer demand. It is estimated that turbine power output can increase by as much as 0.7% for every 1°C drop in inlet air temperature. Two inlet air cooling systems are widely used: evaporative cooling systems and chiller systems. Evaporative cooling is economical and uncomplicated, but its efficiency can significantly drop if the relative humidity is high. There is also a potential for excessive wear of compressor blades if water droplets are carried into the compressor section. On the other hand, chiller systems have the advantage of being independent of humidity and do not have the potential to cause damage to compressor blades. However, chiller systems consume power and cause a larger pressure drop than evaporative coolers. In this work, the possibility of using an ejector refrigeration system to cool turbine inlet air is explored. These systems are low-maintenance, fluid-driven, heat-operated devices that can use part of the turbine exhaust flow as the heat source for running the cycle. These systems require only pump power to feed liquid refrigerant to the vapor generator, making the power consumption potentially lower than conventional chiller systems. Using thermodynamic analysis, this paper compares the performance of ejector refrigeration systems with that of chiller systems based primarily on their power consumption. Performance characteristics for the ejector system are obtained through a CFD model that uses a real-gas model for R-134a. Published data on the performance of a commercial gas turbine is also considered. The power consumption of ejector refrigeration systems is found to be significantly smaller than that of vapor compression systems, with savings ranging from 19% to 80%. Power consumption is also found to be small compared to the boost in turbine power that is obtained. The percentage of waste heat needed to operate the ejector refrigeration system is found to be generally less than 25%.


Author(s):  
Christopher Y. H. Chao ◽  
Philip C. W. Kwong ◽  
J. H. Wang

In many Asian countries Coal is frequently used a major fuel in power plants. Burning coal creates quite a lot of environmental problems when compared to other cleaner fuels such as natural gas. Experimental study of co-combustion of coal and biomass was conducted in a laboratory scale combustion facility to evaluate the combustion and pollutant emission performance under different operation parameters. Rice husk and bamboo were used as the biomass fuels in this study. This paper reported the influence of the biomass blending ratio in the fuel mixture and the excess air ratio on the combustion behavior. It was noted that the combustion temperature and the energy output from the co-firing process were reduced compared to coal combustion alone owing to the fact that biomass has lower heating value compared to coal. However, the high volatile matter (VM) content of biomass improved the combustion time scale so that the carbon monoxide (CO) emissions were reduced substantially. In addition, the fuel nitrogen and sulfur content in biomass were lower than that of coal and hence suppressed the formation of nitrogen oxides (NOx) and sulfur dioxide (SO2) during the cocombustion process. The increase of excess air ratio also affected most of the pollutant emissions. The pollutant emission per unit energy output at different excess air ratios and biomass blending ratios were studied in detail in this paper. Attention should be paid to the high potential of slagging and fouling in the boiler when co-firing coal with biomass.


Author(s):  
Mohammad Omar Abdullah ◽  
Voon Chun Yung ◽  
Audra Anak Jom ◽  
Alvin Yeo Wee ◽  
Martin Anyi ◽  
...  

The eBario project has won the eAsia Award and the Mondialogo Engineering Award in 2004 and 2005 respectively for it’s successful implementation of an Information and Telecommunications Technology Center (ICT) and solar renewable energy-incentive rural community project at the Bario Highland of Sarawak, East Malaysia, Borneo (http://www.unimas.my/ebario/). Although solar photovoltaic (PV) energy has been opted for power generation at the ICT Telecenter for the past five years, there is still a need to investigate the cost-effectiveness of the current energy setup as well as to conduct sustainability study taking into account factors such as system efficiency, weather, costs of fuel, operating costs, as well as to explore the feasibility of implementing alternative energy resources for the rural ICT Telecenter. Recent theoretical study conducted has shown that renewable combined power systems are more sustainable in terms of supplying electricity to the ICT Telecenter, and in a more cost-effective way compared to a standalone PV system which is subject to the cloud and the recent dense haze problems. For that purpose, two combined power systems are being put into consideration namely PV-Hydro and PV-Hydro-Fuel Cell, where the total simulated annualized cost for these two system configurations are US$10,847 and US$76,010 respectively as far as the present location is concerned. The PVHydro-Fuel Cell produces electrical energy at the amount of 3,577 kWh/yr while the annual energy consumption is 3,203 kWhr/yr. On the other hand, PV-Hydro produces 3,789 kWhr/yr of electricity annually load which consumes energy at 3,209 kWhr/yr. Results thus obtained has shown that the PVHydro scheme is expected to have advantages over the existing PV standalone system. Firstly, it is more cost-effective. Secondly, it provides the best outcomes for the local indigenous community and the natural highland environments both for now and the future. Thirdly, it also able to relate the continuity of both economic and social aspects of the local society as a whole. As the combined PV-Hydro system had been chosen, plus for completeness purposes, the present paper also discussed the custom design and construction of a small waterwheel breast-shot hydro-generator, suited to the local location and existing water energy resources. Energy saving design calculations and Sankey diagram showing the energy flows for the new combined system are also given herein. Finally, the energy system performance equations and the performance curves introduced in this study provide a new simple method of evaluating renewable energy systems.


Author(s):  
Darko Koracin ◽  
Richard L. Reinhardt ◽  
Marshall B. Liddle ◽  
Travis McCord ◽  
Domagoj Podnar ◽  
...  

The main objectives of the study were to support wind energy assessment for all of Nevada by providing two annual cycles of high-resolution mesoscale modeling evaluated by data from surface stations and towers, estimating differences between these annual cycles and standard wind maps, and providing wind and wind power density statistics at elevations relevant to turbine operations. In addition to the 65 existing Remote Automated Weather Stations in Nevada, four 50-m-tall meteorological towers were deployed in western Nevada to capture long-term wind characteristics and provide database input to verify and improve modeling results. The modeling methodology using Mesoscale Model 5 (MM5) was developed to provide wind and wind power density estimates representing mesoscale effects that include actual synoptic forcing during the two annual cycles (horizontal resolution on the order of 2 and 3 km). The results from the two annual simulation cycles show similar wind statistics with an average difference of less than 100 W/m2. The available TrueWind results for the wind power density at 50 m show greater values of wind power density compared to both MM5-simulated annual cycles for most of the area. However, mainly in the Sierras and the mountainous regions of southern and eastern Nevada, the MM5 simulations indicate greater values for wind power density. The results of this study suggest that the synthesis of the data from a network of tower observations and high-resolution mesoscale modeling is a crucial tool for assessing the wind power density in Nevada and, more generally, other topographically developed areas.


Author(s):  
Nnamdi V. Ogueke ◽  
Emmanuel E. Anyanwu

The performance analysis of a solid adsorption solar refrigerator during the collector cool-down and refrigerant evaporation/re-adsorption phases is presented. The effects of the condenser pressure, evaporator pressure and initial adsorbate concentration on the collector cool-down and refrigerant evaporation/re-adsorption were tested. The adsorbate concentration re-adsorbed increased from 55% to 98% when the initial adsorbate concentration was dropped from 0.29kg/kg to 0.21kg/kg while the mass of ice produced rose from 0kg to 1.5kg for the same range of variation of initial adsorbate concentration.


Author(s):  
George A. Mertz ◽  
Gregory S. Raffio ◽  
Kelly Kissock

Environmental and resource limitations provide increased motivation for design of net-zero energy or net-zero CO2 buildings. The optimum building design will have the lowest lifecycle cost. This paper describes a method of performing and comparing lifecycle costs for standard, CO2-neutral and net-zero energy buildings. Costs of source energy are calculated based on the cost of photovoltaic systems, tradable renewable certificates, CO2 credits and conventional energy. Building energy simulation is used to determine building energy use. A case study is conducted on a proposed net-zero energy house. The paper identifies the least-cost net-zero energy house, the least-cost CO2 neutral house, and the overall least-cost house. The methodology can be generalized to different climates and buildings. The method and results may be of interest to builders, developers, city planners, or organizations managing multiple buildings.


Author(s):  
A. Castell ◽  
C. Sole´ ◽  
M. Medrano ◽  
M. Nogue´s ◽  
L. F. Cabeza

Most of the storage systems available on the market use water as storage medium. Enhancing the storage performance is necessary to increase the performance of most systems. The stratification phenomenon is employed to improve the efficiency of storage tanks. Heat at an intermediate temperature, not high enough to heat up the top layer, can still be used to heat the lower, colder layers. There are a lot of parameters to study the stratification in a water tank such as the Mix Number and the Richardson Number among others. The idea studied here was to use these stratification parameters to compare two tanks with the same dimensions during charging and discharging processes. One of them is a traditional water tank and the other is a PCM-water (a water tank with a Phase Change Material). A PCM is good because it has high energy density if there is a small temperature change, since then the latent heat is much larger than the sensible heat. On the other hand, the temperature change in the top layer of a hot water store with stratification is usually small as it is held as close as possible at or above the temperature for usage. In the system studied the Phase Change Material is placed at the top of the tank, therefore the advantages of the stratification still remain. The aim of this work is to demonstrate that the use of PCM in the upper part of a water tank holds or improves the benefit of the stratification phenomenon.


Author(s):  
Wei Chen

In this paper, heat transfer and flow in the composite solar wall with porous absorber has been studied. The unsteady numerical simulation is employed to analyze the performance of the flow and temperature field in the composite solar wall. The excess heat is stored within the porous absorber during solar radiation and there is stratification in the porous layer. So, the porous absorber works as thermal insulator in a degree when no solar shining is available. The heating characteristic of two types of the composite solar wall with porous absorber has been conducted. The influence of particle size, porosity and porous absorber arrange in the solar composite wall on the heating room temperature is significant. The results show that all these factors should be taken into account for a better design of a heating system.


Author(s):  
Bruce Kelly ◽  
Henry Price ◽  
Doug Brosseau ◽  
David Kearney

The present generation of commercial parabolic trough solar power plant uses a synthetic oil as the heat transport fluid in the collector field. The plants are currently operating at the upper temperature limit of the fluid, and further improvements in the solar-to-electric conversion efficiency are likely to be incremental. In contrast, adoption of a nitrate salt, or a nitrate/nitrite salt, mixture as the heat transport fluid would allow the collector field outlet temperature to increase by 50 to 100 °C, which translates into an increase in the gross Rankine cycle efficiency from the present 37.5 percent to new values in the range of 40 to 41 percent. Further, the low cost and the low vapor pressure of the candidate salt mixtures allow the heat transport fluid to also act as the storage medium in a thermal storage system. Using a salt mixture in the collector field should reduce the unit cost of thermal storage by approximately half compared to the current indirect designs. The principal, and far from minor, liability of the candidate salt mixtures are freezing points in the range of 120 °C to 220 °C. As a consequence, all salt components, including the collector field, will require some form of electric heating for freeze protection. Further, collector designs will need to be demonstrated, or developed, which are tolerant of a limited number of freeze/thaw cycles. The candidate salts are also corrosive to the current ball joint sealing materials. This paper outlines the problems which need to be solved before a commercial salt project could reasonably be considered by a project developer, the elements of a test and demonstration program to solve the problems, and the contributions which will be necessary from the salt component vendors, the project developers, and the financial community.


Author(s):  
Allison Gray ◽  
Aaron Sahm ◽  
Marc Newmarker ◽  
Rick Hurt ◽  
Robert Boehm ◽  
...  

University of Nevada, Las Vegas Renewable Energy Center (UNLV-REC) currently monitors three meteorological stations in southern Nevada under the direction of the National Renewable Energy Laboratory (NREL) and is funded by the Nevada Southwest Energy Partnership (NSWEP). The three station locations are Eldorado Valley, UNLV-REC Solar Site, and Nevada Power Company Clark Station. The installation dates for each of the locations were October of 2004 for Eldorado Valley station, August of 2003 for the UNLV-REC Solar Site, and March of 2006 for the Nevada Power Clark Station. Publicly available data from each site have been archived since installation completion. This paper discusses the installation of the equipment for each site and images of the setup. The data that is being collected between the sites is also compared. Data comparisons between the sites include net monthly solar energy; monthly peak direct normal irradiance (DNI), average daily wind speed, monthly wind roses, and average monthly dry bulb temperatures. The recently measured data is also compared to resource maps developed by NREL and to TMY data. With these meteorological resources, microclimatic variations can be studied for the area and used as a renewable energy resource for renewable installations in southern Nevada.


Sign in / Sign up

Export Citation Format

Share Document