scholarly journals Design of a Bidirectional Energy Storage System for a Vanadium Redox Flow Battery in a Microgrid with SOC Estimation

2017 ◽  
Vol 9 (3) ◽  
pp. 441 ◽  
Author(s):  
Qingwu Gong ◽  
Jiazhi Lei
Batteries ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 20 ◽  
Author(s):  
Md. Akter ◽  
Yifeng Li ◽  
Jie Bao ◽  
Maria Skyllas-Kazacos ◽  
Muhammed Rahman

The battery energy storage system has become an indispensable part of the current electricity network due to the vast integration of renewable energy sources (RESs). This paper proposes an optimal charging method of a vanadium redox flow battery (VRB)-based energy storage system, which ensures the maximum harvesting of the free energy from RESs by maintaining safe operations of the battery. The VRB has a deep discharging capability, long cycle life, and high energy efficiency with no issues of cell-balancing, which make it suitable for large-scale energy storage systems. The proposed approach determines the appropriate charging current and the optimal electrolyte flow rate based on the available time-varying input power. Moreover, the charging current is bounded by the limiting current, which prevents the gassing side-reactions and protects the VRB from overcharging. The proposed optimal charging method is investigated by simulation studies using MATLAB/Simulink.


2013 ◽  
Vol 433-435 ◽  
pp. 1197-1200
Author(s):  
Xiao Dong Wang ◽  
Lei Zhang ◽  
Hong Fang Xie ◽  
Ying Ming Liu ◽  
Xiao Wen Song

With the rapid increase of the installed capacity of wind power, the output power fluctuations of wind park had a great influence on the stability of the grid. Energy storage system in the wind farm can smooth the fluctuations of wind power effectively, and improve grid ability to admit wind power. The model of energy storage system based on vanadium redox flow battery was builded according to the state of charge, voltage and current characteristics. A kind of power control strategy with low-pass filtering was designed based on the new system model. Simulation results show that this model is more closer to the actual vanadium flow battery characteristics, the control strategy based on low-pass filtering can stabilize the output fluctuations of the wind farm power.


DYNA ◽  
2017 ◽  
Vol 84 (202) ◽  
pp. 230-238 ◽  
Author(s):  
Gaston Orlando Suvire ◽  
Leonardo Javier Ontiveros ◽  
Pedro Enrique Mercado

La incorporación de potencia eólica en microredes está creciendo progresivamente. Esta integración puede introducir problemas en la dinámica y calidad de potencia del sistema eléctrico debido a fluctuaciones del viento. Este trabajo propone un controlador compuesto por un sistema de acondicionamiento de potencia (PCS), un almacenador flywheel (FESS) y una batería de flujo redox de vanadio (VRFB) para mitigar problemas introducidos por la generación eólica en microredes. Se presenta un modelo del PCS/FESS-VRFB y se propone un método para controlar la potencia intercambiada entre el controlador y la red eléctrica. El método tiene dos modos: nivelación de potencia y control de frecuencia. A través de simulaciones, se estudia el desempeño del PCS/FESS-VRFB cuando opera con generación eólica en microredes. Los resultados demuestran un adecuado desempeño del método propuesto y una alta efectividad para nivelar las fluctuaciones de potencia eólica y proveer soporte para el control de frecuencia de la microred.


Batteries ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 53
Author(s):  
Purna C. Ghimire ◽  
Arjun Bhattarai ◽  
Tuti M. Lim ◽  
Nyunt Wai ◽  
Maria Skyllas-Kazacos ◽  
...  

Progress in renewable energy production has directed interest in advanced developments of energy storage systems. The all-vanadium redox flow battery (VRFB) is one of the attractive technologies for large scale energy storage due to its design versatility and scalability, longevity, good round-trip efficiencies, stable capacity and safety. Despite these advantages, the deployment of the vanadium battery has been limited due to vanadium and cell material costs, as well as supply issues. Improving stack power density can lower the cost per kW power output and therefore, intensive research and development is currently ongoing to improve cell performance by increasing electrode activity, reducing cell resistance, improving membrane selectivity and ionic conductivity, etc. In order to evaluate the cell performance arising from this intensive R&D, numerous physical, electrochemical and chemical techniques are employed, which are mostly carried out ex situ, particularly on cell characterizations. However, this approach is unable to provide in-depth insights into the changes within the cell during operation. Therefore, in situ diagnostic tools have been developed to acquire information relating to the design, operating parameters and cell materials during VRFB operation. This paper reviews in situ diagnostic tools used to realize an in-depth insight into the VRFBs. A systematic review of the previous research in the field is presented with the advantages and limitations of each technique being discussed, along with the recommendations to guide researchers to identify the most appropriate technique for specific investigations.


Sign in / Sign up

Export Citation Format

Share Document