scholarly journals The Non-Relativistic Limit of the DKP Equation in Non-Commutative Phase-Space

Symmetry ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 223 ◽  
Author(s):  
Ilyas Haouam

The non-relativistic limit of the relativistic DKP equation for both of zero and unity spin particles is studied through the canonical transformation known as the Foldy–Wouthuysen transformation, similar to that of the case of the Dirac equation for spin-1/2 particles. By considering only the non-commutativity in phases with a non-interacting fields case leads to the non-commutative Schrödinger equation; thereafter, considering the non-commutativity in phase and space with an external electromagnetic field thus leads to extract a phase-space non-commutative Schrödinger–Pauli equation; there, we examined the effect of the non-commutativity in phase-space on the non-relativistic limit of the DKP equation. However, with both Bopp–Shift linear transformation through the Heisenberg-like commutation relations, and the Moyal–Weyl product, we introduced the non-commutativity in phase and space.

1991 ◽  
Vol 06 (22) ◽  
pp. 3989-3996 ◽  
Author(s):  
V.V. NESTERENKO

A model of a relativistic particle with curvature interacting with an external electromagnetic field in a “minimal way” is investigated. The generalized Hamiltonian formalism for this model is constructed. A complete set of the constraints in the phase space is obtained and then divided into first- and second-class constraints. On this basis the canonical quantization of the model is considered. A wave equation in the operator form, resembling the Dirac equation in an external electromagnetic field, is obtained. The massless version of this model is briefly discussed.


1993 ◽  
Vol 08 (05) ◽  
pp. 463-468 ◽  
Author(s):  
D.M. GITMAN ◽  
A.V. SAA

A generalization of the pseudoclassical action of a spinning particle in the presence of an anomalous magnetic momentum is given. The action is written in reparametrization and supergauge invariant form. The Dirac quantization, based on the Hamiltonian analyzes of the model, leads to the Dirac-Pauli equation for a particle with an anomalous magnetic momentum in an external electromagnetic field. Due to the structure of first class constraints in that case, the Dirac quantization demands for consistency to take into account an operator’s ordering problem.


1999 ◽  
Vol 14 (10n11) ◽  
pp. 709-720 ◽  
Author(s):  
A. A. DERIGLAZOV ◽  
D. M. GITMAN

We consider a possibility of describing spin one-half and higher spins of massive relativistic particles by means of commuting spinors. We present two classical gauge models with the variables xμ, ξα, χα, where ξ, χ are commuting Majorana spinors. In the course of quantization both models reproduce Dirac equation. We analyze the possibility of introducing an interaction with an external electromagnetic background into the models and generalizing them to higher spin description. The first model admits a minimal interaction with the external electromagnetic field, but leads to reducible representations of the Poincaré group being generalized for higher spins. The second model turns out to be appropriate for description of the massive higher spins. However, it seems to be difficult to introduce a minimal interaction with an external electromagnetic field into this model. We compare our approach with one, which uses Grassmann variables, and establish a relation between them.


Sign in / Sign up

Export Citation Format

Share Document