classical description
Recently Published Documents


TOTAL DOCUMENTS

194
(FIVE YEARS 21)

H-INDEX

25
(FIVE YEARS 2)

Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 590
Author(s):  
Roie Dann ◽  
Ronnie Kosloff

Quantum dynamics of driven open systems should be compatible with both quantum mechanic and thermodynamic principles. By formulating the thermodynamic principles in terms of a set of postulates we obtain a thermodynamically consistent master equation. Following an axiomatic approach, we base the analysis on an autonomous description, incorporating the drive as a large transient control quantum system. In the appropriate physical limit, we derive the semi-classical description, where the control is incorporated as a time-dependent term in the system Hamiltonian. The transition to the semi-classical description reflects the conservation of global coherence and highlights the crucial role of coherence in the initial control state. We demonstrate the theory by analyzing a qubit controlled by a single bosonic mode in a coherent state.


Author(s):  
Erik Rohloff ◽  
Dominik Rudolph ◽  
Onno Strolka ◽  
Irmgard Frank

Is a classical description of nuclear motion sufficient when describing chemical reactions? The present paper investigates some phenomena that were previously attributed to nuclear quantum effects. The aim is to show that these phenomena can be modelled with traditional Car-Parrinello molecular dynamics, that is, with a method which treats nuclear motion classically. We find that no additional paradigm is needed for describing chemical reactions. The special reactivity observed for carbenes can be attributed to the special environment represented by a noble gas matrix. Also the infrared spectrum of porphycene is perfectly modelled by traditional Car-Parrinello molecular dynamics. If no more convincing examples are produced, one will stick to deterministic quantum mechanics, as it is the simpler theory which, in addition, is free of paradoxa.


Author(s):  
Joshua Erlich

It is possible that both the classical description of spacetime and the rules of quantum field theory emerge from a more-fundamental structure of physical law. Pregeometric frameworks transfer some of the puzzles of quantum gravity to a semiclassical arena where those puzzles pose less of a challenge. However, in order to provide a satisfactory description of quantum gravity, a semiclassical description must emerge and contain in its description a macroscopic spacetime geometry, dynamical matter, and a gravitational interaction consistent with general relativity at long distances. In this essay, we argue that a framework that includes a stochastic origin for quantum field theory can provide both the emergence of classical spacetime and a quantized gravitational interaction.


2021 ◽  
Vol 104 (1) ◽  
Author(s):  
Diego Gonzalez ◽  
Daniel Gutiérrez-Ruiz ◽  
J. David Vergara

Atoms ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 41
Author(s):  
Eugene Oks

We studied the consequences of the existence of the second flavor of hydrogen atoms (SFHA)—the existence proven by atomic experiments and evidenced by astrophysical observations—on the resonant charge exchange. We found analytically that there is indeed an important difference in the corresponding cross-sections for the SFHA compared to the usual hydrogen atoms. This difference could serve as an additional tool for distinguishing between the two kinds of hydrogen atoms in future experiments/observations. We also show that the SFHA does not exhibit any Stark effect—whether in a uniform or a non-uniform electric field—in any order of the perturbation theory.


Author(s):  
Jochen Rau

Recent advances in quantum technology – from quantum computers and simulators to communication and metrology – have not only opened up a whole new world of applications but also changed the understanding of quantum theory itself. This text introduces quantum theory entirely from this new perspective. It does away with the traditional approach to quantum theory as a theory of microscopic matter, and focuses instead on quantum theory as a framework for information processing. Accordingly, the emphasis is on concepts like measurement, probability, statistical correlations, and transformations, rather than waves and particles. The text begins with experimental evidence that forces one to abandon the classical description and to re-examine such basic notions as measurement, probability, and state. Thorough investigation of these concepts leads to the alternative framework of quantum theory. The requisite mathematics is developed and linked to its operational meaning. This part of the text culminates in an exploration of some of the most vexing issues of quantum theory, regarding locality, non-contextuality, and realism. The second half of the text explains how the peculiar features of quantum theory are harnessed to tackle information processing tasks that are intractable or even impossible classically. It provides the tools for understanding and designing the pertinent protocols, and discusses a range of examples representative of current quantum technology.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Yulia Ageeva ◽  
Pavel Petrov ◽  
Valery Rubakov

Abstract Genesis within the Horndeski theory is one of possible scenarios for the start of the Universe. In this model, the absence of instabilities is obtained at the expense of the property that coefficients, serving as effective Planck masses, vanish in the asymptotics t → −∞, which signalizes the danger of strong coupling and inconsistency of the classical treatment. We investigate this problem in a specific model and extend the analysis of cubic action for perturbations (arXiv:2003.01202) to arbitrary order. Our study is based on power counting and dimensional analysis of the higher order terms. We derive the latter, find characteristic strong coupling energy scales and obtain the conditions for the validity of the classical description. Curiously, we find that the strongest condition is the same as that obtained in already examined cubic case.


Sign in / Sign up

Export Citation Format

Share Document