scholarly journals A Note on Solitons with Generalized Geodesic Vector Field

Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1104
Author(s):  
Adara M. Blaga ◽  
Amira Ishan ◽  
Sharief Deshmukh

We consider a general notion of an almost Ricci soliton and establish some curvature properties for the case in which the potential vector field of the soliton is a generalized geodesic or a 2-Killing vector field. In this vein, we characterize trivial generalized Ricci solitons.

2019 ◽  
Vol 69 (6) ◽  
pp. 1447-1458 ◽  
Author(s):  
Venkatesha ◽  
Devaraja Mallesha Naik ◽  
H. Aruna Kumara

Abstract In this paper, we consider *-Ricci soliton in the frame-work of Kenmotsu manifolds. First, we prove that if (M, g) is a Kenmotsu manifold and g is a *-Ricci soliton, then soliton constant λ is zero. For 3-dimensional case, if M admits a *-Ricci soliton, then we show that M is of constant sectional curvature –1. Next, we show that if M admits a *-Ricci soliton whose potential vector field is collinear with the characteristic vector field ξ, then M is Einstein and soliton vector field is equal to ξ. Finally, we prove that if g is a gradient almost *-Ricci soliton, then either M is Einstein or the potential vector field is collinear with the characteristic vector field on an open set of M. We verify our result by constructing examples for both *-Ricci soliton and gradient almost *-Ricci soliton.


2019 ◽  
Vol 9 (3) ◽  
pp. 715-726 ◽  
Author(s):  
V. Venkatesha ◽  
H. Aruna Kumara ◽  
Devaraja Mallesha Naik

Abstract We consider almost $$*$$ ∗ -Ricci solitons in the context of paracontact geometry, precisely, on a paraKenmotsu manifold. First, we prove that if the metric g of $$\eta $$ η -Einstein paraKenmotsu manifold is $$*$$ ∗ Ricci soliton, then M is Einstein. Next, we show that if $$\eta $$ η -Einstein paraKenmotsu manifold admits a gradient almost $$*$$ ∗ -Ricci soliton, then either M is Einstein or the potential vector field collinear with Reeb vector field $$\xi $$ ξ . Finally, for three-dimensional case we show that paraKenmotsu manifold is of constant curvature $$-1$$ - 1 . An illustrative example is given to support the obtained results.


2021 ◽  
Vol 13(62) (2) ◽  
pp. 581-594
Author(s):  
Debabrata Kar ◽  
Pradip Majhi

In this paper, we study Eta-Ricci soliton (η-Ricci soliton) on three dimensional N(k)-paracontact metric manifolds. We prove that the scalar curvature of an N(k)-paracontact metric manifold admitting η-Ricci solitons is constant and the manifold is of constant curvature k. Also, we prove that such manifolds are Einstein. Moreover, we show the condition of that the η-Ricci soliton to be expanding, steady or shrinking. In such a case we prove that the potential vector field is Killing vector field. Also, we show that the potential vector field is an infinitesimal automorphism or it leaves the structure tensor in the direction perpendicular to the Reeb vector field ξ. Finally, we illustrate an example of a three dimensional N(k)-paracontact metric manifold admitting an η-Ricci soliton


2019 ◽  
Vol 17 (1) ◽  
pp. 874-882 ◽  
Author(s):  
Xinxin Dai ◽  
Yan Zhao ◽  
Uday Chand De

Abstract Let (M, g) be a non-Kenmotsu (κ, μ)′-almost Kenmotsu manifold of dimension 2n + 1. In this paper, we prove that if the metric g of M is a *-Ricci soliton, then either M is locally isometric to the product ℍn+1(−4)×ℝn or the potential vector field is strict infinitesimal contact transformation. Moreover, two concrete examples of (κ, μ)′-almost Kenmotsu 3-manifolds admitting a Killing vector field and strict infinitesimal contact transformation are given.


2018 ◽  
Vol 62 (4) ◽  
pp. 912-922 ◽  
Author(s):  
Yaning Wang

AbstractIn this paper, we prove that if an almost co-Kähler manifold of dimension greater than three satisfying $\unicode[STIX]{x1D702}$-Einstein condition with constant coefficients is a Ricci soliton with potential vector field being of constant length, then either the manifold is Einstein or the Reeb vector field is parallel. Let $M$ be a non-co-Kähler almost co-Kähler 3-manifold such that the Reeb vector field $\unicode[STIX]{x1D709}$ is an eigenvector field of the Ricci operator. If $M$ is a Ricci soliton with transversal potential vector field, then it is locally isometric to Lie group $E(1,1)$ of rigid motions of the Minkowski 2-space.


2017 ◽  
Vol 15 (1) ◽  
pp. 1236-1243 ◽  
Author(s):  
Yaning Wang

Abstract Let (M3, g) be an almost Kenmotsu 3-manifold such that the Reeb vector field is an eigenvector field of the Ricci operator. In this paper, we prove that if g represents a Ricci soliton whose potential vector field is orthogonal to the Reeb vector field, then M3 is locally isometric to either the hyperbolic space ℍ3(−1) or a non-unimodular Lie group equipped with a left invariant non-Kenmotsu almost Kenmotsu structure. In particular, when g represents a gradient Ricci soliton whose potential vector field is orthogonal to the Reeb vector field, then M3 is locally isometric to either ℍ3(−1) or ℍ2(−4) × ℝ.


Author(s):  
Wenjie Wang

AbstractIn this paper, we study $$\eta$$ η -Ricci solitons on almost cosymplectic $$(k,\mu )$$ ( k , μ ) -manifolds. As an application, it is proved that if an almost cosymplectic $$(k,\mu )$$ ( k , μ ) -metric with $$k<0$$ k < 0 represents a Ricci soliton, then the potential vector field of the Ricci soliton is a strict infinitesimal contact transformation, and the corresponding almost cosymplectic manifold is locally isometric to a Lie group whose local structure is determined completely by $$k<0$$ k < 0 . In addition, a concrete example is constructed to illustrate the above result.


2012 ◽  
Vol 55 (1) ◽  
pp. 123-130 ◽  
Author(s):  
AMALENDU GHOSH

AbstractWe study on a contact metric manifold M2n+1(ϕ, ξ, η, g) such that g is a Ricci soliton with potential vector field V collinear with ξ at each point under different curvature conditions: (i) M is of pointwise constant ξ-sectional curvature, (ii) M is conformally flat.


Geometry ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-4
Author(s):  
S. R. Ashoka ◽  
C. S. Bagewadi ◽  
Gurupadavva Ingalahalli

We study Ricci solitons in -Sasakian manifolds and show that it is a shrinking or expanding soliton and the manifold is Einstein with Killing vector field. Further, we prove that if is conformal Killilng vector field, then the Ricci soliton in 3-dimensional -Sasakian manifolds is shrinking or expanding but cannot be steady.


2010 ◽  
Vol 54 (1) ◽  
pp. 47-53 ◽  
Author(s):  
Jong Taek Cho

AbstractA compact contact Ricci soliton (whose potential vector field is the Reeb vector field) is Sasaki–Einstein. A compact contact homogeneous manifold with a Ricci soliton is Sasaki–Einstein.


Sign in / Sign up

Export Citation Format

Share Document