scholarly journals Some Symmetry Identities for Carlitz’s Type Degenerate Twisted (p,q)-Euler Polynomials Related to Alternating Twisted (p,q)-Sums

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1371
Author(s):  
Cheon-Seoung Ryoo

In this paper, we define a new form of Carlitz’s type degenerate twisted (p,q)-Euler numbers and polynomials by generalizing the degenerate Euler numbers and polynomials, Carlitz’s type degenerate q-Euler numbers and polynomials. Some interesting identities, explicit formulas, symmetric properties, a connection with Carlitz’s type degenerate twisted (p,q)-Euler numbers and polynomials are obtained. Finally, we investigate the zeros of the Carlitz’s type degenerate twisted (p,q)-Euler polynomials by using computer.

Symmetry ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 95
Author(s):  
Kyung-Won Hwang ◽  
Ravi P. Agarwal ◽  
Cheon Seoung Ryoo

The main aim of this article is to investigate some interesting symmetric identities for the Dirichlet-type multiple (p,q)-L function. We use this function to examine the symmetry of the generalized higher-order (p,q)-Euler polynomials related to χ. First, the generalized higher-order (p,q)-Euler numbers and polynomials related to χ are defined. We also give a few new symmetric properties for the Dirichlet-type multiple (p,q)-L-function and generalized higher-order (p,q)-Euler polynomials related to χ.


Symmetry ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 645 ◽  
Author(s):  
Kyung-Won Hwang ◽  
Cheon Seoung Ryoo

The main purpose of this paper is to find some interesting symmetric identities for the ( p , q ) -Hurwitz-Euler eta function in a complex field. Firstly, we define the multiple ( p , q ) -Hurwitz-Euler eta function by generalizing the Carlitz’s form ( p , q ) -Euler numbers and polynomials. We find some formulas and properties involved in Carlitz’s form ( p , q ) -Euler numbers and polynomials with higher order. We find new symmetric identities for multiple ( p , q ) -Hurwitz-Euler eta functions. We also obtain symmetric identities for Carlitz’s form ( p , q ) -Euler numbers and polynomials with higher order by using symmetry about multiple ( p , q ) -Hurwitz-Euler eta functions. Finally, we study the distribution and symmetric properties of the zero of Carlitz’s form ( p , q ) -Euler numbers and polynomials with higher order.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Serkan Araci ◽  
Mehmet Acikgoz ◽  
Jong Jin Seo

We deal with -Euler numbers and -Bernoulli numbers. We derive some interesting relations for -Euler numbers and polynomials by using their generating function and derivative operator. Also, we derive relations between the -Euler numbers and -Bernoulli numbers via the -adic -integral in the -adic integer ring.


2012 ◽  
Vol 2012 ◽  
pp. 1-14
Author(s):  
H. Y. Lee ◽  
N. S. Jung ◽  
C. S. Ryoo

We generalize the Euler numbers and polynomials by the generalized -Euler numbers and polynomials . For the complement theorem, have interesting different properties from the Euler polynomials and we observe an interesting phenomenon of “scattering” of the zeros of the the generalized Euler polynomials in complex plane.


Author(s):  
Waseem Khan

Kim-Kim [12] introduced the new type of degenerate Bernoulli numbers and polynomials arising from the degenerate logarithm function. In this paper, we introduce a new type of degenerate poly-Euler polynomials and numbers, are called degenerate poly-Euler polynomials and numbers, by using the degenerate polylogarithm function and derive several properties on the degenerate poly-Euler polynomials and numbers. In the last section, we also consider the degenerate unipoly-Euler polynomials attached to an arithmetic function, by using the degenerate polylogarithm function and investigate some identities of those polynomials. In particular, we give some new explicit expressions and identities of degenerate unipoly polynomials related to special numbers and polynomials.


2010 ◽  
Vol 2010 (1) ◽  
pp. 765259 ◽  
Author(s):  
Eun-Jung Moon ◽  
Seog-Hoon Rim ◽  
Jeong-Hee Jin ◽  
Sun-Jung Lee

2008 ◽  
Vol 2008 ◽  
pp. 1-11 ◽  
Author(s):  
Taekyun Kim

Fors∈ℂ, the Euler zeta function and the Hurwitz-type Euler zeta function are defined byζE(s)=2∑n=1∞((−1)n/ns), andζE(s,x)=2∑n=0∞((−1)n/(n+x)s). Thus, we note that the Euler zeta functions are entire functions in whole complexs-plane, and these zeta functions have the values of the Euler numbers or the Euler polynomials at negative integers. That is,ζE(−k)=Ek∗, andζE(−k,x)=Ek∗(x). We give some interesting identities between the Euler numbers and the zeta functions. Finally, we will give the new values of the Euler zeta function at positive even integers.


Author(s):  
Taekyun Kim ◽  
Dae San Kim ◽  
Han Young Kim ◽  
Jongkyum Kwon

Abstract In this paper, we study some identities on Euler numbers and polynomials, and those on degenerate Euler numbers and polynomials which are derived from the fermionic p-adic integrals on $\mathbb{Z}_{p}$ Z p . Specifically, we obtain a recursive formula for alternating integer power sums and representations of alternating integer power sum polynomials in terms of Euler polynomials and Stirling numbers of the second kind, as well as various properties about Euler numbers and polynomials. In addition, we deduce representations of degenerate alternating integer power sum polynomials in terms of degenerate Euler polynomials and degenerate Stirling numbers of the second kind, as well as certain properties on degenerate Euler numbers and polynomials.


Sign in / Sign up

Export Citation Format

Share Document