scholarly journals The Reactivity of Human and Equine Estrogen Quinones towards Purine Nucleosides

Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1641
Author(s):  
Zsolt Benedek ◽  
Peter Girnt ◽  
Julianna Olah

Conjugated estrogen medicines, which are produced from the urine of pregnant mares for the purpose of menopausal hormone replacement therapy (HRT), contain the sulfate conjugates of estrone, equilin, and equilenin in varying proportions. The latter three steroid sex hormones are highly similar in molecular structure as they only differ in the degree of unsaturation of the sterane ring “B”: the cyclohexene ring in estrone (which is naturally present in both humans and horses) is replaced by more symmetrical cyclohexadiene and benzene rings in the horse-specific (“equine”) hormones equilin and equilenin, respectively. Though the structure of ring “B” has only moderate influence on the estrogenic activity desired in HRT, it might still significantly affect the reactivity in potential carcinogenic pathways. In the present theoretical study, we focus on the interaction of estrogen orthoquinones, formed upon metabolic oxidation of estrogens in breast cells with purine nucleosides. This multistep process results in a purine base loss in the DNA chain (depurination) and the formation of a “depurinating adduct” from the quinone and the base. The point mutations induced in this manner are suggested to manifest in breast cancer development in the long run. We examine six reactions between deoxyadenosine and deoxyguanosine as nucleosides and estrone-3,4-quinone, equilin-3,4-quinone, and equilenin-3,4-quinone as mutagens. We performed DFT calculations to determine the reaction mechanisms and establish a structure–reactivity relationship between the degree of unsaturation of ring “B” and the expected rate of DNA depurination. As quinones might be present in the cytosol in various protonated forms, we introduce the concept of “effective barriers” to account for the different reactivity and different concentrations of quinone derivatives. According to our results, both equine estrogens have the potential to facilitate depurination as the activation barrier of one of the elementary steps (the initial Michael addition in the case of equilenin and the rearomatization step in the case of equilin) significantly decreases compared to that of estrone. We conclude that the appearance of exogenous equine estrogen quinones due to HRT might increase the risk of depurination-induced breast cancer development compared to the exposure to endogenous estrone metabolites. Still, further studies are required to identify the rate-limiting step of depurination under intracellular conditions to reveal whether the decrease in the barriers affects the overall rate of carcinogenesis.

Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1391
Author(s):  
Boyoung Park ◽  
Se-Eun Lim ◽  
HyoJin Ahn ◽  
Junghyun Yoon ◽  
Yun Su Choi

We evaluated the heterogeneity of the effect of known risk factors on breast cancer development based on breast density by using the Breast Imaging-Reporting and Data System (BI-RADS). In total, 4,898,880 women, aged 40–74 years, who participated in the national breast cancer screening program in 2009–2010 were followed up to December 2018. Increased age showed a heterogeneous association with breast cancer (1-year hazard ratio (HR) = 0.92, 1.00 (reference), 1.03, and 1.03 in women with BI-RADS density category 1, 2, 3, and 4, respectively; P-heterogeneity < 0.001). More advanced age at menopause increased breast cancer risk in all BI-RADS categories. This was more prominent in women with BI-RADS density category 1 but less prominent in women in other BI-RADS categories (P-heterogeneity = 0.009). In postmenopausal women, a family history of breast cancer, body mass index ≥ 25 kg/m2, and smoking showed a heterogeneous association with breast cancer across all BI-RADS categories. Other risk factors including age at menarche, menopause, hormone replacement therapy after menopause, oral contraceptive use, and alcohol consumption did not show a heterogeneous association with breast cancer across the BI-RADS categories. Several known risk factors of breast cancer had a heterogeneous effect on breast cancer development across breast density categories, especially in postmenopausal women.


Marine Drugs ◽  
2021 ◽  
Vol 19 (4) ◽  
pp. 210
Author(s):  
Sullim Lee ◽  
Geum Jin Kim ◽  
Hyukbean Kwon ◽  
Joo-Won Nam ◽  
Ji Yun Baek ◽  
...  

Menopause, caused by decreases in estrogen production, results in symptoms such as facial flushing, vaginal atrophy, and osteoporosis. Although hormone replacement therapy is utilized to treat menopausal symptoms, it is associated with a risk of breast cancer development. We aimed to evaluate the estrogenic activities of Spartina anglica (SA) and its compounds and identify potential candidates for the treatment of estrogen reduction without the risk of breast cancer. We evaluated the estrogenic and anti-proliferative effects of extracts of SA and its compounds in MCF-7 breast cancer cells. We performed an uterotrophic assay using an immature female rat model. Among extracts of SA, belowground part (SA-bg-E50) had potent estrogenic activity. In the immature female rat model, the administration of SA-bg-E50 increased uterine weight compared with that in the normal group. Among the compounds isolated from SA, 1,3-di-O-trans-feruloyl-(-)-quinic acid (1) had significant estrogenic activity and induced phosphorylation at serine residues of estrogen receptor (ER)α. All extracts and compounds from SA did not increase MCF-7 cell proliferation. Compound 1 is expected to act as an ERα ligand and have estrogenic effects, without side effects, such as breast cancer development.


Sign in / Sign up

Export Citation Format

Share Document