scholarly journals The Double Phospho/Dephosphorylation Cycle as a Benchmark to Validate an Effective Taylor Series Method to Integrate Ordinary Differential Equations

Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1684
Author(s):  
Alessandro Borri ◽  
Francesco Carravetta ◽  
Pasquale Palumbo

The double phosphorylation/dephosphorylation cycle consists of a symmetric network of biochemical reactions of paramount importance in many intracellular mechanisms. From a network perspective, they consist of four enzymatic reactions interconnected in a specular way. The general approach to model enzymatic reactions in a deterministic fashion is by means of stiff Ordinary Differential Equations (ODEs) that are usually hard to integrate according to biologically meaningful parameter settings. Indeed, the quest for model simplification started more than one century ago with the seminal works by Michaelis and Menten, and their Quasi Steady-State Approximation methods are still matter of investigation nowadays. This work proposes an effective algorithm based on Taylor series methods that manages to overcome the problems arising in the integration of stiff ODEs, without settling for model approximations. The double phosphorylation/dephosphorylation cycle is exploited as a benchmark to validate the methodology from a numerical viewpoint.

2018 ◽  
Vol 8 (1) ◽  
pp. 10-17 ◽  
Author(s):  
Petr Veigend ◽  
Gabriela Nečasová ◽  
Václav Šátek

Abstract This paper deals with a model of the telegraph line that consists of system of ordinary differential equations, rather than partial differential telegraph equation. Numerical solution is then based on an original mathematical method. This method uses the Taylor series for solving ordinary differential equations with initial condition - initial value problems in a non-traditional way. Systems of ordinary differential equations are solved using variable order, variable step-size Modern Taylor Series Method. The Modern Taylor Series Method is based on a recurrent calculation of the Taylor series terms for each time interval. The second part of paper presents the solution of linear problems which comes from the model of telegraph line. All experiments were performed using MATLAB software, the newly developed linear solver that uses Modern Taylor Series Method. Linear solver was compared with the state of the art solvers in MATLAB and SPICE software.


Author(s):  
Chun-Hui He

Purpose Analytical methods are widely used in heat and fluid flow; the purpose of this paper is to couple Taylor series method and Bubbfil algorithm to solve nonlinear differential equations. Design/methodology/approach A series solution is obtained with some unknown constants, which can be determined by incorporating boundary conditions, and the constants are calculated by the Bubbfil algorithm. Findings This paper gives an analytical approach to a nonlinear equation arising in porous catalyst using Taylor series and Bubbfil algorithm, and a high accuracy can be achieved. Research limitations/implications The coupled method of Taylor series and Bubbfil algorithm is a powerful method for nonlinear differential equations. Practical implications The proposed technology can be used in various numerical methods. Originality/value A new analytical method is proposed based on Taylor series and Bubbfil algorithm, which is a development of Newton’s iteration method and an ancient Chinese algorithm. The solution process is simple and easy to follow.


2014 ◽  
Vol 07 (01) ◽  
pp. 1350034 ◽  
Author(s):  
M. B. Suleiman ◽  
H. Musa ◽  
F. Ismail ◽  
N. Senu ◽  
Z. B. Ibrahim

A superclass of block backward differentiation formula (BBDF) suitable for solving stiff ordinary differential equations is developed. The method is of order 3, with smaller error constant than the conventional BBDF. It is A-stable and generates two points at each step of the integration. A comparison is made between the new method, the 2-point block backward differentiation formula (2BBDF) and 1-point backward differentiation formula (1BDF). The numerical results show that the method developed outperformed the 2BBDF and 1BDF methods in terms of accuracy. It also reduces the integration steps when compared with the 1BDF method.


2021 ◽  
Vol 5 (2) ◽  
pp. 579-583
Author(s):  
Muhammad Abdullahi ◽  
Bashir Sule ◽  
Mustapha Isyaku

This paper is aimed at deriving a 2-point zero stable numerical algorithm of block backward differentiation formula using Taylor series expansion, for solving first order ordinary differential equation. The order and zero stability of the method are investigated and the derived method is found to be zero stable and of order 3. Hence, the method is suitable for solving first order ordinary differential equation. Implementation of the method has been considered


Sign in / Sign up

Export Citation Format

Share Document