scholarly journals Fisher and Skew Information Correlations of Two Coupled Trapped Ions: Intrinsic Decoherence and Lamb-Dicke Nonlinearity

Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2243
Author(s):  
Abdel-Baset A. Mohamed ◽  
Ahmed Farouk ◽  
Mansour F. Yassen ◽  
Hichem Eleuch

It is well known that many quantum information processing methods in artificial atoms depend largely on their engineering properties and their ability to generate quantum correlations. In this paper, we investigate the non-classical correlation dynamics of two trapped ions by using local quantum Fisher information, local quantum uncertainty, as well as logarithmic negativity. The system engineering is designed such that the two-trapped-ions work as two diploe-coupled qubits in a Lamb-Dicke regime. The center-of-mass vibrational modes are initially in coherent/even coherent states. It is found that the two-trapped-ions correlations can be controlled by the Lamb-Dicke nonlinearity, the nonclassicality effect of the initial center-of-mass vibrational mode, as well as the trapped-ion coupling and the intrinsic decoherence. The sudden changes in the non-classical correlations and their stability are shown against Lamb-Dicke nonlinearity, the nonclassicality, the trapped-ion coupling, and the intrinsic decoherence.

Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 352
Author(s):  
Abdel-Baset A. Mohamed ◽  
Eied. M. Khalil ◽  
Mahmoud M. Selim ◽  
Hichem Eleuch

The dynamics of two charged qubits containing Josephson Junctions inside a cavity are investigated under the intrinsic decoherence effect. New types of quantum correlations via local quantum Fisher information and Bures distance norm are explored. We show that we can control the quantum correlations robustness by the intrinsic decoherence rate, the qubit-qubit coupling as well as by the initial coherent states superposition. The phenomenon of sudden changes and the freezing behavior for the local quantum Fisher information are sensitive to the initial coherent state superposition and the intrinsic decoherence.


2020 ◽  
Vol 66 (4 Jul-Aug) ◽  
pp. 525
Author(s):  
M. Chávez-Huerta ◽  
F. Rojas

Green sulfur bacteria is a photosynthetic organism whose light-harvesting complex accommodates a pigment-protein complex called Fenna-Matthews-Olson (FMO). The FMO complex sustains quantum coherence and quantum correlations between the electronic states of spatially separated pigment molecules as energy moves with nearly a 100% quantum efficiency to the reaction center. We present a method based on the quantum uncertainty associated to local measurements to quantify discord-like quantum correlations between two subsystems where one is a qubit and the other is a qudit. We implement the method by calculating local quantum uncertainty (LQU), concurrence, and coherence between subsystems of pure and mixed states represented by the eigenstates and by the thermal equilibrium state determined by the FMO Hamiltonian. Three partitions of the seven chromophores network define the subsystems: one chromophore with six chromophores, pairs of chromophores, and one chromophore with two chromophores. Implementation of the LQU approach allows us to characterize quantum correlations that had not been studied before, identify the most quantum correlated subsets of chromophores, and determine that, in the strongest associations of chromophores, the LQU is a monotonically increasing function of the coherence.


2018 ◽  
Vol 32 (20) ◽  
pp. 1850218 ◽  
Author(s):  
Youssef Khedif ◽  
Mohammed Daoud

We investigate the behavior of quantum correlations in some specific Werner-like two-qubit states, where the qubit interacts individually with non-Markovian environment. We employ the local quantum uncertainty and trace distance discord to quantify the amount of quantum correlations between the evolved qubits and the corresponding analytical expressions are derived. For specific values of the parameters characterizing the whole system, the dynamics of quantum correlations exhibits collapse and revival phenomena. The influence of the non-Markovianity is also investigated to analyze the monotonic decay of quantum correlations in the limiting case of Markovian regime. Furthermore, we show that trace distance discord captures quantum correlations that cannot be revealed by local quantum uncertainty in some particular situations.


2021 ◽  
Vol 3 (1) ◽  
pp. 228-241
Author(s):  
Rahul Raj ◽  
Shreya Banerjee ◽  
Prasanta K. Panigrahi

Measurements leading to the collapse of states and the non-local quantum correlations are the key to all applications of quantum mechanics as well as in the studies of quantum foundation. The former is crucial for quantum parameter estimation, which is greatly affected by the physical environment and the measurement scheme itself. Its quantification is necessary to find efficient measurement schemes and circumvent the non-desirable environmental effects. This has led to the intense investigation of quantum metrology, extending the Cramér–Rao bound to the quantum domain through quantum Fisher information. Among all quantum states, the separable ones have the least quantumness; being devoid of the fragile non-local correlations, the component states remain unaffected in local operations performed by any of the parties. Therefore, using these states for the remote design of quantum states with high quantum Fisher information can have diverse applications in quantum information processing; accurate parameter estimation being a prominent example, as the quantum information extraction solely depends on it. Here, we demonstrate that these separable states with the least quantumness can be made extremely useful in parameter estimation tasks, and further show even in the case of the shared channel inflicted with the amplitude damping noise and phase flip noise, there is a gain in Quantum Fisher information (QFI). We subsequently pointed out that the symmetric W states, incapable of perfectly teleporting an unknown quantum state, are highly effective for remotely designing quantum states with high quantum Fisher information.


2021 ◽  
Vol 21 (15&16) ◽  
pp. 1274-1295
Author(s):  
A.G. Abdelwahab ◽  
A. Ghwail ◽  
N. Metwally ◽  
M.H. Mahran ◽  
A. -S. F. Obada

The local and non local behavior of the accelerated Gisin state are investigated either before or after filtering process. It is shown that, the possibility of predicting the non-local behavior is forseen at large values of the weight of the Gisin and acceleration parameters. Due to the filtering process, the non-locality behavior of the Gisin state is predicted at small values of the weight parameter. The amount of non classical correlations are quantified by means of the local quantum uncertainty (LQU)and the concurrence, where the LQU is more sensitive to the non-locality than the concurrence. The phenomenon of the sudden changes is displayed for both quantifiers. Our results show that, the accelerated Gisin state could be used to mask information, where all the possible partitions of the masked state satisfy the masking criteria. Moreover, there is a set of states, which satisfy the masking condition, that is generated between each qubit and its masker qubit. For this set, the amount of the non-classical correlations increases as the acceleration parameter increases . Further, the filtering process improves these correlations, where their maximum bounds are much larger than those depicted for non-filtered states.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 263
Author(s):  
Paolo Gibilisco ◽  
Davide Girolami ◽  
Frank Hansen

Local quantum uncertainty and interferometric power were introduced by Girolami et al. as geometric quantifiers of quantum correlations. The aim of the present paper is to discuss their properties in a unified manner by means of the metric adjusted skew information defined by Hansen.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 311
Author(s):  
A.-B. A. Mohamed ◽  
E. M. Khalil ◽  
M. F. Yassen ◽  
H. Eleuch

In this paper, we study a Hamiltonian system constituted by two coupled two-level atoms (qubits) interacting with a nonlinear generalized cavity field. The nonclassical two-qubit correlation dynamics are investigated using Bures distance entanglement and local quantum Fisher information under the influences of intrinsic decoherence and qubit–qubit interaction. The effects of the superposition of two identical generalized coherent states and the initial coherent field intensity on the generated two-qubit correlations are investigated. Entanglement of sudden death and sudden birth of the Bures distance entanglement as well as the sudden changes in local Fisher information are observed. We show that the robustness, against decoherence, of the generated two-qubit correlations can be controlled by qubit–qubit coupling and the initial coherent cavity states.


2021 ◽  
Vol 96 (7) ◽  
pp. 075101
Author(s):  
You-neng Guo ◽  
Hu-ping Peng ◽  
Qing-long Tian ◽  
Zhi-guang Tan ◽  
Ying Chen

Sign in / Sign up

Export Citation Format

Share Document