scholarly journals On Some Laws of Large Numbers for Uncertain Random Variables

Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2258
Author(s):  
Piotr Nowak ◽  
Olgierd Hryniewicz

Baoding Liu created uncertainty theory to describe the information represented by human language. In turn, Yuhan Liu founded chance theory for modelling phenomena where both uncertainty and randomness are present. The first theory involves an uncertain measure and variable, whereas the second one introduces the notions of a chance measure and an uncertain random variable. Laws of large numbers (LLNs) are important theorems within both theories. In this paper, we prove a law of large numbers (LLN) for uncertain random variables being continuous functions of pairwise independent, identically distributed random variables and regular, independent, identically distributed uncertain variables, which is a generalisation of a previously proved version of LLN, where the independence of random variables was assumed. Moreover, we prove the Marcinkiewicz–Zygmund type LLN in the case of uncertain random variables. The proved version of the Marcinkiewicz–Zygmund type theorem reflects the difference between probability and chance theory. Furthermore, we obtain the Chow type LLN for delayed sums of uncertain random variables and formulate counterparts of the last two theorems for uncertain variables. Finally, we provide illustrative examples of applications of the proved theorems. All the proved theorems can be applied for uncertain random variables being functions of symmetrically or asymmetrically distributed random variables, and symmetrical or asymmetrical uncertain variables. Furthermore, in some special cases, under the assumption of symmetry of the random and uncertain variables, the limits in the first and the third theorem have forms of symmetrical uncertain variables.

2017 ◽  
Vol 31 (15) ◽  
pp. 1750117
Author(s):  
Marco A. S. Trindade

In this work, we prove a weak law and a strong law of large numbers through the concept of [Formula: see text]-product for dependent random variables, in the context of nonextensive statistical mechanics. Applications for the consistency of estimators are presented and connections with stochastic processes are discussed.


2003 ◽  
Vol 40 (01) ◽  
pp. 226-241 ◽  
Author(s):  
Sunder Sethuraman

Let X 1, X 2, …, X n be a sequence of independent, identically distributed positive integer random variables with distribution function F. Anderson (1970) proved a variant of the law of large numbers by showing that the sample maximum moves asymptotically on two values if and only if F satisfies a ‘clustering’ condition, In this article, we generalize Anderson's result and show that it is robust by proving that, for any r ≥ 0, the sample maximum and other extremes asymptotically cluster on r + 2 values if and only if Together with previous work which considered other asymptotic properties of these sample extremes, a more detailed asymptotic clustering structure for discrete order statistics is presented.


2004 ◽  
Vol 2004 (9) ◽  
pp. 443-458
Author(s):  
Anna Kuczmaszewska

We study the equivalence between the weak and strong laws of large numbers for arrays of row-wise independent random elements with values in a Banach spaceℬ. The conditions under which this equivalence holds are of the Chung or Chung-Teicher types. These conditions are expressed in terms of convergence of specific series ando(1)requirements on specific weighted row-wise sums. Moreover, there are not any conditions assumed on the geometry of the underlying Banach space.


Sign in / Sign up

Export Citation Format

Share Document