scholarly journals Application of Artificial Neural Networks for Dengue Fever Outbreak Predictions in the Northwest Coast of Yucatan, Mexico and San Juan, Puerto Rico

2018 ◽  
Vol 3 (1) ◽  
pp. 5 ◽  
Author(s):  
Abdiel Laureano-Rosario ◽  
Andrew Duncan ◽  
Pablo Mendez-Lazaro ◽  
Julian Garcia-Rejon ◽  
Salvador Gomez-Carro ◽  
...  
2018 ◽  
Vol 17 (1) ◽  
pp. 137-148
Author(s):  
Abdiel E. Laureano-Rosario ◽  
Andrew P. Duncan ◽  
Erin M. Symonds ◽  
Dragan A. Savic ◽  
Frank E. Muller-Karger

Abstract Predicting recreational water quality is key to protecting public health from exposure to wastewater-associated pathogens. It is not feasible to monitor recreational waters for all pathogens; therefore, monitoring programs use fecal indicator bacteria (FIB), such as enterococci, to identify wastewater pollution. Artificial neural networks (ANNs) were used to predict when culturable enterococci concentrations exceeded the U.S. Environmental Protection Agency (U.S. EPA) Recreational Water Quality Criteria (RWQC) at Escambron Beach, San Juan, Puerto Rico. Ten years of culturable enterococci data were analyzed together with satellite-derived sea surface temperature (SST), direct normal irradiance (DNI), turbidity, and dew point, along with local observations of precipitation and mean sea level (MSL). The factors identified as the most relevant for enterococci exceedance predictions based on the U.S. EPA RWQC were DNI, turbidity, cumulative 48 h precipitation, MSL, and SST; they predicted culturable enterococci exceedances with an accuracy of 75% and power greater than 60% based on the Receiving Operating Characteristic curve and F-Measure metrics. Results show the applicability of satellite-derived data and ANNs to predict recreational water quality at Escambron Beach. Future work should incorporate local sanitary survey data to predict risky recreational water conditions and protect human health.


2021 ◽  
Author(s):  
Julie Chi Chow ◽  
Tsair-Wei Chien ◽  
Lin-Yen Wang ◽  
Willy Chou

Abstract Background: Dengue fever (DF) is an important public health issue in Asia. However, the disease is extremely hard to detect using traditional dichotomous (i.e., absent vs. present) evaluations of symptoms. Convolution neural network (CNN) and artificial neural networks(ANN) can improve prediction accuracy on account of its usage of a large number of parameters for modeling. A hypothesis using a combined scheme of algorithms, including convolutional neural networks(CNN), artificial neural networks(ANN), K-nearest Neighbors Algorithm(KNN), and logis-tical regression(LR), was made to improve the prediction DF accuracy for children. Methods: We extracted 19 feature variables of DF-related symptoms from 177 pediatric patients (69 diagnosed with DF). A 11-variables were eligible by observing the statistical significance in predicting DF risk. The prediction accuracy was based on two training (80%) and testing (20%) sets on model accuracy of the area under the receiver operating characteristic curve (AUC) greater than 0.80 and 0.70, respectively, for discriminating DF+ and DF− in the two sets. Two scenarios of the combined scheme and individual algorithms were compared using the training set to predict the testing set. Results: We observed that (i) k-nearest neighbors algorithm has poorer AUC(<0.50), (ii)LR has relatively higher AUC(=0.70), and (ii) the three alternatives have almost equal AUC(=0.68), but smaller than the individual algorithms of NaiveBayes, Logistic regression in raw data and NaiveBayes in normalized data. Conclusion: An LR-based APP was designed to detect DF in children. The 11-item model is suggested to develop the APP for helping patients, family members, and clinicians discriminate DF from other febrile illnesses at an early stage.


Author(s):  
Kobiljon Kh. Zoidov ◽  
◽  
Svetlana V. Ponomareva ◽  
Daniel I. Serebryansky ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document