scholarly journals Cold Dark Matter: A Gluonic Bose–Einstein Condensate in Anti-de Sitter Space Time

Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 402
Author(s):  
Gilles Cohen-Tannoudji ◽  
Jean-Pierre Gazeau

In the same way as the realization of some of the famous gedanken experiments imagined by the founding fathers of quantum mechanics has recently led to the current renewal of the interpretation of quantum physics, it seems that the most recent progress of observational astrophysics can be interpreted as the realization of some cosmological gedanken experiments such as the removal from the universe of the whole visible matter or the cosmic time travel leading to a new cosmological standard model. This standard model involves two dark components of the universe, dark energy and dark matter. Whereas dark energy is usually associated with the cosmological constant, we propose explaining dark matter as a pure QCD effect, namely a gluonic Bose–Einstein condensate, following the transition from the quark gluon plasma phase to the colorless hadronic phase. Our approach not only allows us to assume a Dark/Visible ratio equal to 11/2 but also provides gluons (and di-gluons, viewed as quasi-particles) with an extra mass of vibrational nature. Such an interpretation would support the idea that, apart from the violation of the matter/antimatter symmetry satisfying the Sakharov’s conditions, the reconciliation of particle physics and cosmology needs not the recourse to any ad hoc fields, particles or hidden variables.

Author(s):  
Gilles Cohen-Tannoudji ◽  
Jean-Pierre Gazeau

In the same way as the realization of some of the famous gedanken experiments imagined by the founding fathers of quantum mechanics has recently led to the current renewal of the interpretation of quantum physics, it seems that the most recent progresses of observational astrophysics can be interpreted as the realization of some cosmological gedanken experiments such as the removal from the universe of the whole visible matter or the cosmic time travel leading to a new cosmological standard model. This standard model involves two dark components of the universe, dark energy and dark matter. Whereas dark energy is usually associated with the positive cosmological constant, we propose to explain dark matter as a pure QCD effect. This effect is due to the trace anomaly viewed as a negative cosmological constant accompanying baryonic matter at the hadronization transition from the quark gluon plasma phase to the colorless hadronic phase. Our approach not only yields a ratio Dark/Visible equal to 11/2 but also provides gluons and (anti-)quarks with an extra mass of vibrational nature. Currently observed dark matter is thus interpreted as a gluon Bose Einstein condensate that is a relic of the quark period. Such an interpretation would comfort the idea that, apart from the violation of the matter/antimatter symmetry satisfying the Sakharov’s conditions, the reconciliation of particle physics and cosmology needs not the recourse to any ad hoc fields, particles or hidden variables.


Author(s):  
Gilles Cohen-Tannoudji ◽  
Jean-Pierre Gazeau

In the same way as the realization of some of the famous gedanken experiments imagined by the founding fathers of quantum mechanics has recently led to the current renewal of the interpretation of quantum physics, it seems that the most recent progresses of observational astrophysics can be interpreted as the realization of some cosmological gedanken experiments such as the removal from the universe of the whole visible matter or the cosmic time travel leading to a new cosmological standard model. This standard model involves two dark components of the universe, dark energy and dark matter. Whereas dark energy is usually associated with the cosmological constant, we propose to explain dark matter as a pure QCD effect, namely a gluon Bose Einstein condensate, following the transition from the quark gluon plasma phase to the colorless hadronic phase. Our approach not only allows us to assume a ratio Dark/Visible equal to 11/2 but also provides gluons and (anti-)quarks with an extra mass of vibrational nature. Such an interpretation would comfort the idea that, apart from the violation of the matter/antimatter symmetry satisfying the Sakharov’s conditions, the reconciliation of particle physics and cosmology needs not the recourse to any ad hoc fields, particles or hidden variables.


Author(s):  
Gilles Cohen-Tannoudji ◽  
Jean-Pierre Gazeau

In the same way as the realization of some of the famous gedanken experiments imagined by the founding fathers of quantum mechanics has recently led to the current renewal of the interpretation of quantum physics, it seems that the most recent progresses of observational astrophysics can be interpreted as the realization of some cosmological gedanken experiments such as the removal from the universe of the whole visible matter or the cosmic time travel leading to a new cosmological standard model. This standard model involves two dark components of the universe, dark energy and dark matter. Whereas dark energy is usually associated with the cosmological constant, we propose to interpret dark matter in terms of a pure vibration energy due to positive curvature and held by quarks and/or by a gluon Bose Einstein condensate accompanying baryonic matter at the hadronization transition from the quark gluon plasma phase to the colorless hadronic phase. Such an interpretation, partially based on mass formulae in terms of energy and spin in de Sitter and Anti de Sitter respectively, would comfort the idea that, apart from the violation of the matter/antimatter symmetry satisfying the Sakharov’s conditions, the reconciliation of particle physics and cosmology does not need the recourse to any ad hoc fields, particles or hidden variables.


Author(s):  
Gilles Cohen-Tannoudji ◽  
Jean-Pierre Gazeau

In the same way as the realization of some of the famous gedanken experiments imagined by the founding fathers of quantum mechanics has recently led to the current renewal of the interpretation of quantum physics, it seems that the most recent progresses of observational astrophysics can be interpreted as the realization of some cosmological gedanken experiments such as the removal from the universe of the whole visible matter or the cosmic time travel leading to a new cosmological standard model. This standard model involves two dark components of the universe, dark energy and dark matter. Whereas dark energy is usually associated with the cosmological constant, we propose to interpret dark matter in terms of a pure vibration energy due to positive curvature and held by quarks and/or by a gluon Bose Einstein condensate accompanying baryonic matter at the hadronization transition from the quark gluon plasma phase to the colorless hadronic phase. Such an interpretation, partially based on mass formulae in terms of energy and spin in de Sitter and Anti de Sitter respectively, would comfort the idea that, apart from the violation of the matter/antimatter symmetry satisfying the Sakharov’s conditions, the reconciliation of particle physics and cosmology does not need the recourse to any ad hoc fields, particles or hidden variables.


2010 ◽  
Vol 25 (02n03) ◽  
pp. 554-563 ◽  
Author(s):  
P. SIKIVIE

The hypothesis of an 'invisible' axion was made by Misha Shifman and others, approximately thirty years ago. It has turned out to be an unusually fruitful idea, crossing boundaries between particle physics, astrophysics and cosmology. An axion with mass of order 10-5 eV (with large uncertainties) is one of the leading candidates for the dark matter of the universe. It was found recently that dark matter axions thermalize and form a Bose-Einstein condensate (BEC). Because they form a BEC, axions differ from ordinary cold dark matter (CDM) in the non-linear regime of structure formation and upon entering the horizon. Axion BEC provides a mechanism for the production of net overall rotation in dark matter halos, and for the alignment of cosmic microwave anisotropy multipoles. Because there is evidence for these phenomena, unexplained with ordinary CDM, an argument can be made that the dark matter is axions.


2018 ◽  
Vol 27 (09) ◽  
pp. 1850100
Author(s):  
Merab Gogberashvili ◽  
Alexander Sakharov

We consider the hypothesis that dark matter (DM) and dark energy (DE) consist of ultra-light self-interacting scalar particles. It is found that the Klein–Gordon equation with only two free parameters (mass and self-coupling) on a Schwarzschild background, at the galactic length-scales has the solution which corresponds to Bose–Einstein Condensate (BEC), behaving as DM, while the constant solution at supra-galactic scales can explain DE.


2020 ◽  
Vol 29 (14) ◽  
pp. 2043013
Author(s):  
Saurya Das

We show that if Dark Matter is made up of light bosons, they form a Bose–Einstein condensate in the early Universe. This in turn naturally induces a Dark Energy of approximately equal density and exerting negative pressure. This explains the so-called coincidence problem.


Sign in / Sign up

Export Citation Format

Share Document