coincidence problem
Recently Published Documents


TOTAL DOCUMENTS

174
(FIVE YEARS 37)

H-INDEX

31
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Prabhas Kumar Singh ◽  
Biswapati Jana ◽  
Kakali Datta

Abstract In 2020, Ashraf et al. proposed an interval type-2 fuzzy logic based block similarity calculation using color proximity relations of neighboring pixels in a steganographic scheme. Their method works well for detecting similarity, but it has drawbacks in terms of visual quality, imperceptibility, security, and robustness. Using Mamdani fuzzy logic to identify color proximity at the block level, as well as a shared secret key and post-processing system, this paper attempts to develop a robust data hiding scheme with similarity measure to ensure good visual quality, robustness, imperceptibility, and enhance the security. Further, the block color proximity is graded using an interval threshold. Accordingly, data embedding is processed in the sequence generated by the shared secret keys. In order to increase the quality and accuracy of the recovered secret message, the tampering coincidence problem is solved through a post-processing approach. The experimental analysis, steganalysis and comparisons clearly illustrate the effectiveness of the proposed scheme in terms of visual quality, structural similarity, recoverability and robustness.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Yi-Peng Wu ◽  
Elena Pinetti ◽  
Kalliopi Petraki ◽  
Joseph Silk

Abstract The ultra-slow-roll (USR) inflation represents a class of single-field models with sharp deceleration of the rolling dynamics on small scales, leading to a significantly enhanced power spectrum of the curvature perturbations and primordial black hole (PBH) formation. Such a sharp transition of the inflationary background can trigger the coherent motion of scalar condensates with effective potentials governed by the rolling rate of the inflaton field. We show that a scalar condensate carrying (a combination of) baryon or lepton number can achieve successful baryogenesis through the Affleck-Dine mechanism from unconventional initial conditions excited by the USR transition. Viable parameter space for creating the correct baryon asymmetry of the Universe naturally incorporates the specific limit for PBHs to contribute significantly to dark matter, shedding light on the cosmic coincidence problem between the baryon and dark matter densities today.


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Nimmala Narendra ◽  
Narendra Sahu ◽  
Sujay Shil

AbstractWe propose a minimal model for the cosmic coincidence problem $$\Omega _\mathrm{DM}/\Omega _B \sim 5$$ Ω DM / Ω B ∼ 5 and neutrino mass in a type-II seesaw scenario. We extend the standard model of particle physics with a $$\mathrm SU(2)$$ S U ( 2 ) singlet leptonic Dirac fermion $$\chi $$ χ , which represents the candidate of dark matter (DM), and two triplet scalars $$\Delta _{1,2}$$ Δ 1 , 2 with hierarchical masses. In the early Universe, the CP violating out-of-equilibrium decay of lightest $$\Delta $$ Δ generates a net $$B-L$$ B - L asymmetry in the visible sector (comprising of SM fields), where B and L represents the total baryon and lepton number respectively. A part of this asymmetry gets transferred to the dark sector (comprising of DM $$\chi $$ χ ) through a dimension eight operator which conserves $$B-L$$ B - L . Above the electroweak phase transition, the $$B-L$$ B - L asymmetry of the visible sector gets converted to a net B-asymmetry by the $$B+L$$ B + L violating sphalerons, while the $$B-L$$ B - L asymmetry of the dark sector remains untouched which we see today as relics of DM. We show that the observed DM abundance can be explained for a DM mass about 8 GeV. We then introduce an additional singlet scalar field $$\phi $$ ϕ which mixes with the SM-Higgs to annihilate the symmetric component of the DM resonantly which requires the singlet scalar mass to be twice the DM mass, i.e. around 16 GeV, which can be searched at collider experiments. In our model, the active neutrinos also get small masses by the induced vacuum expectation value (vev) of the triplet scalars $$\Delta _{1,2}$$ Δ 1 , 2 . In the later part of the paper we discuss all the constraints on model parameters coming from invisible Higgs decay, Higgs signal strength, DM direct detection and relic density of DM.


Author(s):  
Arkajit Aich

Abstract We investigate Dark Energy by associating it with vacuum energy or Cosmological constant Λ which is taken to be dynamic in nature. Our approach is phenomenological and falls within the domain of variable-Λ Cosmology. However, motivated by quantum theory of metastable vacuum decay, we proposed a new phenomenological decay law of Λ(t) where Λ(t) is a superposition of constant and variable components viz. Λ(t) = ΛC + Λv which is indicated by the word “hybrid dynamic” in the title. By taking a simplified two-fluid scenario with the Universe consisting of Dark Energy and another major component, we found the solutions for three particular phenomenological expressions and made a parametrization of the model in terms of dilution parameter (u). For pressureless Dust and dynamic Dark Energy Universe, we found the matter density and dilution parameter (the dilution parameter has been defined in the text as the exponent of scale factor in the expression of density of the other major component, representing the dilution of the component with the expansion of Universe in the presence of dynamic Dark Energy) to be Ωm0 = 0.29 ± 0.03, u = 2.90 ± 0.54 at 1σ by analysing 580 supernova from Union 2.1 catalogue. The physical features of the model in regard to scale factor evolution, deceleration parameter, cosmic age has also been studied and parallels have been drawn with ΛCDM model. The status of Cosmological problems in the model has also been checked which showed that the model solves the Cosmological Constant Problem but the Coincidence problem still exists in the model.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Francesc Cunillera ◽  
Antonio Padilla

Abstract We argue that, for string compactifications broadly consistent with swampland constraints, dark energy is likely to signal the beginning of the end of our universe as we know it, perhaps even through decompactification, with possible implications for the cosmological coincidence problem. Thanks to the scarcity (absence?) of stable de Sitter vacua, dark energy in string theory is assumed to take the form of a quintessence field in slow roll. As it rolls, a tower of heavy states will generically descend, triggering an apocalyptic phase transition in the low energy cosmological dynamics after at most a few hundred Hubble times. As a result, dark energy domination cannot continue indefinitely and there is at least a percentage chance that we find ourselves in the first Hubble epoch. We use a toy model of quintessence coupled to a tower of heavy states to explicitly demonstrate the breakdown in the cosmological dynamics as the tower becomes light. This occurs through a large number of corresponding particles being produced after a certain time, overwhelming quintessence. We also discuss some implications for early universe inflation.


Author(s):  
Boon Kiat Oh ◽  
John A Peacock ◽  
Sadegh Khochfar ◽  
Britton D Smith

Abstract We present results from seven cosmological simulations that have been extended beyond the present era as far as redshift z ≈ −0.99 or t ≈ 96.0 Gyr, using the Enzo simulation code. We adopt the calibrated star formation and feedback prescriptions from our previous work on reproducing the Milky Way with Enzo, with modifications to the simulation code, chemistry and cooling library. We then consider the future behaviour of the halo mass function (HMF), the equation of state (EOS) of the IGM, and the cosmic star formation history (SFH). Consistent with previous work, we find a freeze out in the HMF at z ≈ −0.6 or t ≈ 28.1 Gyr. The evolution of the EOS of the IGM presents an interesting case study of the cosmological coincidence problem, where there is a sharp decline in the IGM temperature immediately after z = 0. For the SFH, the simulations produce a peak and a subsequent decline into the future. However, we do find a turnaround in the SFH after z ≈ −0.98 or t ≈ 82.4 Gyr in some simulations, which we attribute to limitations of the criteria used for star formation. By integrating the SFH in time up to z ≈ −0.92 or t ≈ 55.1 Gyr, the simulation with the best spatial resolution predicts an asymptotic total stellar mass that is very close to that obtained from extrapolating the fit of the observed SFR. Lastly, we investigate the future evolution of the partition of baryons within a Milky Way-sized galaxy, using both a zoom and a box simulation. Despite vastly different resolutions, these simulations predict individual haloes containing an equal fraction of baryons in stars and gas at the time of freeze out.


2021 ◽  
Vol 36 (23) ◽  
pp. 2150159
Author(s):  
Jyotirmay Das Mandal ◽  
Mahasweta Biswas ◽  
Ujjal Debnath

This paper reviews a systematic dynamical analysis on a general form of scalar field as Dark Energy (DE) with dark matter (DM) to sort out the “cosmic coincidence” problem. Here the autonomous system of differential equations is two-dimensional (2D) as well as nonlinear. So we have utilized nonlinear dynamical theory to explain various cosmological implications of this model. Nowadays, we have noted that some works are undertaking this nonlinear systems theory. Although we have seen that most of the works are simplifying the underlying nonlinear dynamical systems similar to a linear one, that can lead to flawed conclusions about the evolution of the universe. Since an important theorem, Poincare–Bendixson theorem asserts linearization of the nonlinear system and does not give “global” stability, unlike the linear one if the dimension is more than two. Anyway, our work is different from others in this regard. Here the dimension of the system is two, and we have obtained some interesting stuffs also. We have applied the above theorem of nonlinear dynamical systems and others to find the “global” stability. This theorem offers completely different stable solutions, contrary to the prediction of linear analysis. As a result, we have obtained two fixed points; one of them is a stable “attractor” (it is attracting “node” actually), and thereafter, we have analyzed the stability. To investigate the dynamical system behavior, we have drawn different figures. These figures include vector field and a new plotting strategy (explained later). These investigations suggest a way out of the coincidence problem (or, precisely speaking, what should be the mathematical form of the term “[Formula: see text]”, which indicates interaction between DE and DM to reduce coincidence). In this scenario, if the equation of state (EoS) of DE and DM obeys [Formula: see text], then coincidence problem may be avoided.


2021 ◽  
Vol 81 (8) ◽  
Author(s):  
Qihong Huang ◽  
He Huang ◽  
Bing Xu ◽  
Feiquan Tu ◽  
Jun Chen

AbstractBased on the holographic principle and the Barrow entropy, Barrow holographic dark energy had been proposed. In order to analyze the stability and the evolution of Barrow holographic dark energy, we, in this paper, apply the dynamical analysis and statefinder methods to Barrow holographic dark energy with different IR cutoff and interacting terms. In the case of using Hubble horizon as IR cutoff with the interacting term $$Q=\frac{\lambda }{H}\rho _{m}\rho _{D}$$ Q = λ H ρ m ρ D , we find this model is stable and can be used to describe the whole evolution of the universe when the energy transfers from the pressureless matter to the Barrow holographic dark energy. When the dynamical analysis method is applied to this stable model, an attractor corresponding to an accelerated expansion epoch exists and this attractor can behave as the cosmological constant. Furthermore, the coincidence problem can be solved in this case. Then, after using the statefinder analysis method to this model, we find this model can be discriminated from the standard $$\Lambda $$ Λ CDM model. Finally, we have discussed the turning point of Hubble diagram in Barrow holographic dark energy and find the turning point does not exist in this model.


Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 263
Author(s):  
Ayan Mitra ◽  
Vasilios Zarikas ◽  
Alfio Bonanno ◽  
Michael Good ◽  
Ertan Güdekli

A recent work proposed that the recent cosmic passage to a cosmic acceleration era is the result of the existence of small anti-gravity sources in each galaxy and clusters of galaxies. In particular, a Swiss-cheese cosmology model, which relativistically integrates the contribution of all these anti-gravity sources on a galactic scale has been constructed assuming the presence of an infrared fixed point for a scale dependent cosmological constant. The derived cosmological expansion provides an explanation for both the fine tuning and the coincidence problem. The present work relaxes the previous assumption on the running of the cosmological constant and allows for a generic scaling around the infrared fixed point. Our analysis reveals that, in order to produce a cosmic evolution consistent with the best ΛCDM model, the IR-running of the cosmological constant is consistent with the presence of an IR-fixed point.


Author(s):  
M. Cadoni ◽  
A. P. Sanna

In this paper, we investigate anisotropic fluid cosmology in a situation where the space–time metric back-reacts in a local, time-dependent way to the presence of inhomogeneities. We derive exact solutions to the Einstein field equations describing Friedmann–Lemaítre–Robertson–Walker (FLRW) large-scale cosmological evolution in the presence of local inhomogeneities and time-dependent backreaction. We use our derivation to tackle the cosmological constant problem. A cosmological constant emerges by averaging the backreaction term on spatial scales of the order of 100 Mpc, at which our universe begins to appear homogeneous and isotropic. We find that the order of magnitude of the “emerged” cosmological constant agrees with astrophysical observations and is related in a natural way to baryonic matter density. Thus, there is no coincidence problem in our framework.


Sign in / Sign up

Export Citation Format

Share Document