scholarly journals T = 4 Icosahedral HIV-1 Capsid As an Immunogenic Vector for HIV-1 V3 Loop Epitope Display

Viruses ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 667
Author(s):  
Zhiqing Zhang ◽  
Maozhou He ◽  
Shimeng Bai ◽  
Feng Zhang ◽  
Jie Jiang ◽  
...  

The HIV-1 mature capsid (CA) assumes an amorphous, fullerene conical configuration due to its high flexibility. How native CA self-assembles is still unclear despite having well-defined structures of its pentamer and hexamer building blocks. Here we explored the self-assembly of an engineered capsid protein built through artificial disulfide bonding (CA N21C/A22C) and determined the structure of one fraction of the globular particles. CA N21C/A22C was found to self-assemble into particles in relatively high ionic solutions. These particles contained disulfide-bonding hexamers as determined via non-reducing SDS-PAGE, and exhibited two major components of 57.3 S and 80.5 S in the sedimentation velocity assay. Particles had a globular morphology, approximately 40 nm in diameter, in negative-staining TEM. Through cryo-EM 3-D reconstruction, we determined a novel T = 4 icosahedral structure of CA, comprising 12 pentamers and 30 hexamers at 25 Å resolution. We engineered the HIV-1 V3 loop to the CA particles, and found the resultant particles resembled the morphology of their parental particles in TEM, had a positive reaction with V3-specific neutralizing antibodies, and conferred neutralization immunogenicity in mice. Our results shed light on HIV CA assembly and provide a particulate CA for epitope display.

1991 ◽  
Vol 174 (6) ◽  
pp. 1557-1563 ◽  
Author(s):  
S B Jiang ◽  
K Lin ◽  
A R Neurath

Human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (gp120 and gp41) elicit virus-neutralizing antibodies (VNAB) and also antibodies enhancing HIV-1 infection (EAB). Several epitopes eliciting VNAB have been defined, the principal virus-neutralizing determinant being assigned to the V3 loop of gp120. To provide a background for a rational design of anti-HIV vaccines, it also appears important to define domains eliciting EAB. This was accomplished by screening antisera against synthetic peptides covering almost the entire sequence of gp120/gp41 for their enhancing effects on HIV-1 infection of MT-2 cells, a continuous T cell line. Many (16/30) of the antisera significantly enhanced HIV-1 in the presence of human complement. Antibodies to complement receptor type 2 (CR2) abrogated the antibody-mediated enhancement of HIV-1 infection. Antisera to V3 hypervariable loops of 21 distinct HIV-1 isolates were also tested for their enhancing effects on HIV-1IIIB infection. 11 of these sera contained VNAB and 10 enhanced HIV-1IIIB infection. All antisera with virus-enhancing activity contained antibodies crossreactive with the V3 loop of HIV-1IIIB, and the virus-enhancing activity increased with increasing serological crossreactivity. These results suggest that immunization with antigens encompassing V3 loops may elicit EAB rather than protective antibodies if epitopes on the immunogen and the predominant HIV-1 isolate infecting a population are insufficiently matched, i.e., crossreactive serologically but not at the level of virus neutralization.


2004 ◽  
Vol 78 (1) ◽  
pp. 146-157 ◽  
Author(s):  
Clarisse Lorin ◽  
Lucile Mollet ◽  
Frédéric Delebecque ◽  
Chantal Combredet ◽  
Bruno Hurtrel ◽  
...  

ABSTRACT The anchored and secreted forms of the human immunodeficiency virus type 1 (HIV-1) 89.6 envelope glycoprotein, either complete or after deletion of the V3 loop, were expressed in a cloned attenuated measles virus (MV) vector. The recombinant viruses grew as efficiently as the parental virus and expressed high levels of the HIV protein. Expression was stable during serial passages. The immunogenicity of these recombinant vectors was tested in mice susceptible to MV and in macaques. High titers of antibodies to both MV and HIV-Env were obtained after a single injection in susceptible mice. These antibodies neutralized homologous SHIV89.6p virus, as well as several heterologous HIV-1 primary isolates. A gp160 mutant in which the V3 loop was deleted induced antibodies that neutralized heterologous viruses more efficiently than antibodies induced by the native envelope protein. A high level of CD8+ and CD4+ cells specific for HIV gp120 was also detected in MV-susceptible mice. Furthermore, recombinant MV was able to raise immune responses against HIV in mice and macaques with a preexisting anti-MV immunity. Therefore, recombinant MV vaccines inducing anti-HIV neutralizing antibodies and specific T lymphocytes responses deserve to be tested as a candidate AIDS vaccine.


2006 ◽  
Vol 80 (3) ◽  
pp. 1414-1426 ◽  
Author(s):  
Y. Li ◽  
K. Svehla ◽  
N. L. Mathy ◽  
G. Voss ◽  
J. R. Mascola ◽  
...  

ABSTRACT We previously reported that soluble, stable YU2 gp140 trimeric human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein immunogens could elicit improved breadth of neutralization against HIV-1 isolates compared to monomeric YU2 gp120 proteins. In this guinea pig immunization study, we sought to extend these data and determine if adjuvant could quantitatively or qualitatively alter the neutralizing response elicited by trimeric or monomeric immunogens. Consistent with our earlier studies, the YU2 gp140 immunogens elicited higher-titer neutralizing antibodies against homologous and heterologous isolates than those elicited by monomeric YU2 gp120. Additionally, the GlaxoSmithKline family of adjuvants AS01B, AS02A, and AS03 induced higher levels of neutralizing antibodies compared to emulsification of the same immunogens in Ribi adjuvant. Further analysis of vaccine sera indicated that homologous virus neutralization was not mediated by antibodies to the V3 loop, although V3 loop-directed neutralization could be detected for some heterologous isolates. In most gp120-inoculated animals, the homologous YU2 neutralization activity was inhibited by a peptide derived from the YU2 V1 loop, whereas the neutralizing activity elicited by YU2 gp140 trimers was much less sensitive to V1 peptide inhibition. Consistent with a less V1-focused antibody response, sera from the gp140-immunized animals more efficiently neutralized heterologous HIV-1 isolates, as determined by two distinct neutralization formats. Thus, there appear to be qualitative differences in the neutralizing antibody response elicited by YU2 gp140 compared to YU2 monomeric gp120. Further mapping analysis of more conserved regions of gp120/gp41 may be required to determine the neutralizing specificity elicited by the trimeric immunogens.


2019 ◽  
Author(s):  
Ludy Registre ◽  
Yvetane Moreau ◽  
Sila Toksoz Ataca ◽  
Surya Pulukuri ◽  
Timothy J. Henrich ◽  
...  

ABSTRACTIn clinical trials, HIV-1 broadly neutralizing antibodies (bnAbs) effectively lower plasma viremia and delay virus reemergence after antiretroviral treatment is stopped among infected individuals that have undetectable virus levels. Presence of less neutralization susceptible strains prior to treatment, however, decreases the efficacy of these antibody-based treatments. The HIV-1 envelope glycoprotein harbors extensive genetic variation, and thus, neutralization sensitivity often cannot be predicted by sequence analysis alone. Sequence-based prediction methods are needed because phenotypic-based assays are labor intensive and not sensitive. Based on the finding that phenotypically confirmed CXCR4- as compared to exclusive CCR5-utilizing strains are less neutralization sensitive, especially to variable loop 1 and 2 (V1-V2) and V3 loop bnAbs, we show that an algorithm that predicts receptor usage identifies envelopes with decreased V3 loop bnAb susceptibility. Homology modeling suggests that the primary V3 loop bnAb epitope is equally accessible among CCR5- and CXCR4-using strains although variants that exclusively use CXCR4 have V3 loop protrusions that interfere with CCR5 receptor interactions. On the other hand, homology modeling also shows that envelope V1 loop orientation interferes with V3 loop directed bnAb binding, and this accounts for decreased neutralization sensitivity in some but not all cases. Thus, there are likely different structural reasons for the co-receptor usage restriction and the differential bnAb susceptibility. Algorithms that use sequence data to predict receptor usage and antibody-envelope homology models can be used to identify variants with decreased sensitivity to V3 loop and potentially other bnAbs.AUTHOR SUMMARYHIV-1 broadly neutralizing antibody (bnAb) therapies are effective, but the pre-existence of less susceptible variants may lead to therapeutic failure. Sequence-based methods are needed to predict pre-treatment variants’ neutralization sensitivity. HIV-1 strains that use the CXCR4 as compared to the CCR5 receptor are less neutralization susceptible, especially to V1-V2 and V3 loop bnAbs. A sequence-based algorithm that predicts receptor usage can identify envelope variants with decreased V3 loop bnAb susceptibility. While the inability to utilize the CCR5 receptor maps to a predicted protrusion in the envelope V3 loop, this viral determinant does not directly influence V3 loop bnAb sensitivity. Furthermore, homology modeling predicted contact between the envelope V1 loop and an antibody also impact V3 loop bnAb susceptibility in some but not all cases. An algorithm that predicts receptor usage and homology modeling can be used to predict sensitivity to bnAbs that target the V3 loop and potentially other envelope domains. These sequence-based methods will be useful as HIV-1 bnAbs enter the clinical arena.


2001 ◽  
Vol 75 (19) ◽  
pp. 9287-9296 ◽  
Author(s):  
Susan E. Malenbaum ◽  
David Yang ◽  
Cecilia Cheng-Mayer

ABSTRACT We compared the immune responses to the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins in humans and macaques with the use of clade A and clade B isogenic V3 loop glycan-possessing and -deficient viruses. We found that the presence or absence of the V3 loop glycan affects to similar extents immune recognition by a panel of anti-HIV human and anti-simian/human immunodeficiency virus (anti-SHIV) macaque sera. All sera tested neutralized the glycan-deficient viruses, in which the conserved CD4BS and CD4i epitopes are more exposed, better than the glycan-containing viruses. The titer of broadly neutralizing antibodies appears to be higher in the sera of macaques infected with glycan-deficient viruses. Collectively, our data add legitimacy to the use of SHIV-macaque models for testing the efficacy of HIV-1 Env-based immunogens. Furthermore, they suggest that antibodies to the CD4BS and CD4i sites of gp120 are prevalent in human and macaque sera and that the use of immunogens in which these conserved neutralizing epitopes are more exposed is likely to increase their immunogenicity.


2011 ◽  
Vol 208 (7) ◽  
pp. 1419-1433 ◽  
Author(s):  
Peter Rusert ◽  
Anders Krarup ◽  
Carsten Magnus ◽  
Oliver F. Brandenberg ◽  
Jacqueline Weber ◽  
...  

The HIV-1 envelope trimer adopts a quaternary conformation that effectively shields neutralization-sensitive domains and thus represents a major obstacle for natural and vaccine-elicited antibody responses. By using a structure–function analysis based on a specifically devised mathematical model, we demonstrate in this study that protection from neutralization is enforced by intersubunit contact between the variable loops 1 and 2 (V1V2) and domains of neighboring gp120 subunits in the trimer encompassing the V3 loop. Our data are consistent with an interaction of the V1V2 and V3 loop at the spike apex as proposed by cryoelectron tomography experiments. By defining the orientation of the V1V2 loop within the trimer toward the neighboring gp120 subunit’s V3 loop, our data close an important gap in the understanding of the architecture of the trimeric spike. Knowledge on how the V1V2 barrier functions in the context of the trimer to mask conserved epitopes on gp120 may aid future vaccine design.


Vaccine ◽  
1995 ◽  
Vol 13 (13) ◽  
pp. 1233-1239 ◽  
Author(s):  
Eduardo A. Scodeller ◽  
Sergio G. Tisminetzky ◽  
Fabiola Porro ◽  
Monica Schiappacassi ◽  
Anita De Rossi ◽  
...  

PLoS ONE ◽  
2015 ◽  
Vol 10 (6) ◽  
pp. e0128823 ◽  
Author(s):  
Yali Qin ◽  
Saikat Banerjee ◽  
Aditi Agrawal ◽  
Heliang Shi ◽  
Marisa Banasik ◽  
...  

2001 ◽  
Vol 75 (9) ◽  
pp. 4165-4175 ◽  
Author(s):  
Norman L. Letvin ◽  
Suzanne Robinson ◽  
Daniela Rohne ◽  
Michael K. Axthelm ◽  
John W. Fanton ◽  
...  

ABSTRACT Vaccine-elicited antibodies specific for the third hypervariable domain of the surface gp120 of human immunodeficiency virus type 1 (HIV-1) (V3 loop) were assessed for their contribution to protection against infection in the simian-human immunodeficiency virus (SHIV)/rhesus monkey model. Peptide vaccine-elicited anti-V3 loop antibody responses were examined for their ability to contain replication of SHIV-89.6, a nonpathogenic SHIV expressing a primary patient isolate HIV-1 envelope, as well as SHIV-89.6P, a pathogenic variant of that virus. Low-titer neutralizing antibodies to SHIV-89.6 that provided partial protection against viremia following SHIV-89.6 infection were generated. A similarly low-titer neutralizing antibody response to SHIV-89.6P that did not contain viremia after infection with SHIV-89.6P was generated, but a trend toward protection against CD4+ T-lymphocyte loss was seen in these infected monkeys. These observations suggest that the V3 loop on some primary patient HIV-1 isolates may be a partially effective target for neutralizing antibodies induced by peptide immunogens.


Sign in / Sign up

Export Citation Format

Share Document