scholarly journals Expanding Repertoire of Plant Positive-Strand RNA Virus Proteases

Viruses ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 66 ◽  
Author(s):  
Krin Mann ◽  
Hélène Sanfaçon

Many plant viruses express their proteins through a polyprotein strategy, requiring the acquisition of protease domains to regulate the release of functional mature proteins and/or intermediate polyproteins. Positive-strand RNA viruses constitute the vast majority of plant viruses and they are diverse in their genomic organization and protein expression strategies. Until recently, proteases encoded by positive-strand RNA viruses were described as belonging to two categories: (1) chymotrypsin-like cysteine and serine proteases and (2) papain-like cysteine protease. However, the functional characterization of plant virus cysteine and serine proteases has highlighted their diversity in terms of biological activities, cleavage site specificities, regulatory mechanisms, and three-dimensional structures. The recent discovery of a plant picorna-like virus glutamic protease with possible structural similarities with fungal and bacterial glutamic proteases also revealed new unexpected sources of protease domains. We discuss the variety of plant positive-strand RNA virus protease domains. We also highlight possible evolution scenarios of these viral proteases, including evidence for the exchange of protease domains amongst unrelated viruses.

2015 ◽  
Vol 89 (12) ◽  
pp. 6184-6195 ◽  
Author(s):  
Xiuling Cao ◽  
Xuejiao Jin ◽  
Xiaofeng Zhang ◽  
Ying Li ◽  
Chunyan Wang ◽  
...  

ABSTRACTAll well-characterized positive-strand RNA viruses[(+)RNA viruses] induce the formation of host membrane-bound viral replication complexes (VRCs), yet the underlying mechanism and machinery for VRC formation remain elusive. We report here the biogenesis and topology of theBeet black scorch virus(BBSV) replication complex. Distinct cytopathological changes typical of endoplasmic reticulum (ER) aggregation and vesiculation were observed in BBSV-infectedNicotiana benthamianacells. Immunogold labeling of the auxiliary replication protein p23 and double-stranded RNA (dsRNA) revealed that the ER-derived membranous spherules provide the site for BBSV replication. Further studies indicated that p23 plays a crucial role in mediating the ER rearrangement. Three-dimensional electron tomographic analysis revealed the formation of multiple ER-originated vesicle packets. Each vesicle packet enclosed a few to hundreds of independent spherules that were invaginations of the ER membranes into the lumen. Strikingly, these vesicle packets were connected to each other via tubules, a rearrangement event that is rare among other virus-induced membrane reorganizations. Fibrillar contents within the spherules were also reconstructed by electron tomography, which showed diverse structures. Our results provide the first, to our knowledge, three-dimensional ultrastructural analysis of membrane-bound VRCs of a plant (+)RNA virus and should help to achieve a better mechanistic understanding of the organization and microenvironment of plant (+)RNA virus replication complexes.IMPORTANCEAssembly of virus replication complexes for all known positive-strand RNA viruses depends on the extensive remodeling of host intracellular membranes.Beet black scorch virus, a necrovirus in the familyTombusviridae, invaginates the endoplasmic reticulum (ER) membranes to form spherules in infected cells. Double-stranded RNAs, the viral replication intermediate, and the viral auxiliary replication protein p23 are all localized within such viral spherules, indicating that these are the sites for generating progeny viral RNAs. Furthermore, the BBSV p23 protein could to some extent reorganize the ER when transiently expressed inN. benthamiana. Electron tomographic analysis resolves the three-dimensional (3D) architecture of such spherules, which are connected to the cytoplasm via a neck-like structure. Strikingly, different numbers of spherules are enclosed in ER-originated vesicle packets that are connected to each other via tubule-like structures. Our results have significant implications for further understanding the mechanisms underlying the replication of positive-strand RNA viruses.


2001 ◽  
Vol 75 (23) ◽  
pp. 11664-11676 ◽  
Author(s):  
David J. Miller ◽  
Michael D. Schwartz ◽  
Paul Ahlquist

ABSTRACT The identification and characterization of host cell membranes essential for positive-strand RNA virus replication should provide insight into the mechanisms of viral replication and potentially identify novel targets for broadly effective antiviral agents. The alphanodavirus flock house virus (FHV) is a positive-strand RNA virus with one of the smallest known genomes among animal RNA viruses, and it can replicate in insect, plant, mammalian, and yeast cells. To investigate the localization of FHV RNA replication, we generated polyclonal antisera against protein A, the FHV RNA-dependent RNA polymerase, which is the sole viral protein required for FHV RNA replication. We detected protein A within 4 h after infection ofDrosophila DL-1 cells and, by differential and isopycnic gradient centrifugation, found that protein A was tightly membrane associated, similar to integral membrane replicase proteins from other positive-strand RNA viruses. Confocal immunofluorescence microscopy and virus-specific, actinomycin D-resistant bromo-UTP incorporation identified mitochondria as the intracellular site of protein A localization and viral RNA synthesis. Selective membrane permeabilization and immunoelectron microscopy further localized protein A to outer mitochondrial membranes. Electron microscopy revealed 40- to 60-nm membrane-bound spherical structures in the mitochondrial intermembrane space of FHV-infected cells, similar in ultrastructural appearance to tombusvirus- and togavirus-induced membrane structures. We concluded that FHV RNA replication occurs on outer mitochondrial membranes and shares fundamental biochemical and ultrastructural features with RNA replication of positive-strand RNA viruses from other families.


2000 ◽  
Vol 81 (12) ◽  
pp. 3107-3114 ◽  
Author(s):  
O. Preisig ◽  
N. Moleleki ◽  
W. A. Smit ◽  
B. D. Wingfield ◽  
M. J. Wingfield

Hypovirulent isolates of the fruit tree fungal pathogen Diaporthe ambigua have previously been shown to harbour a double-stranded (ds)RNA genetic element of about 4 kb. In this study, we established the complete cDNA sequence of this dsRNA, which represents a replicative form of a positive-strand RNA virus that we have named D. ambigua RNA virus (DaRV). The nucleotide sequence of the genome is 4113 bp and has a GC content of 53%. Two large ORFs are present in the same reading frame. They are most probably translated by readthrough of a UAG stop codon in the central part of the genome. The longest possible translation product (p125) has a predicted molecular mass of about 125 kDa. A significant homology can be found to the non-structural proteins of carmoviruses of the positive-strand RNA virus family Tombusviridae. These proteins also include the conserved RNA-dependent RNA polymerase (RDRP) domain. In contrast to the genome organization of these plant viruses, no ORF is present at the 3′ end of the DaRV genome that encodes a coat protein. Therefore, it is proposed that DaRV is not encapsidated but that it occurs as RNA–RDRP complexes and/or that it might be associated with cell membranes. Interestingly, six putative transmembrane helices are predicted in the N-terminal part of p56 (translation product of the first ORF, N-terminal part of p125), which might direct and anchor the viral complex to membranes. DaRV is a mycovirus with a unique genome organization and has a distant relationship to the plant virus family Tombusviridae.


2008 ◽  
Vol 83 (4) ◽  
pp. 1981-1991 ◽  
Author(s):  
Huiquan Liu ◽  
Yanping Fu ◽  
Daohong Jiang ◽  
Guoqing Li ◽  
Jun Xie ◽  
...  

ABSTRACT Previously, we reported that three double-stranded RNA (dsRNA) segments, designated L-, M-, and S-dsRNAs, were detected in Sclerotinia sclerotiorum strain Ep-1PN. Of these, the M-dsRNA segment was derived from the genomic RNA of a potexvirus-like positive-strand RNA virus, Sclerotinia sclerotiorum debilitation-associated RNA virus. Here, we present the complete nucleotide sequence of the L-dsRNA, which is 6,043 nucleotides in length, excluding the poly(A) tail. Sequence analysis revealed the presence of a single open reading frame (nucleotide positions 42 to 5936) that encodes a protein with significant similarity to the replicases of the “alphavirus-like” supergroup of positive-strand RNA viruses. A sequence comparison of the L-dsRNA-encoded putative replicase protein containing conserved methyltransferase, helicase, and RNA-dependent RNA polymerase motifs showed that it has significant sequence similarity to the replicase of Hepatitis E virus, a virus infecting humans. Furthermore, we present convincing evidence that the virus-like L-dsRNA could replicate independently with only a slight impact on growth and virulence of its host. Our results suggest that the L-dsRNA from strain Ep-1PN is derived from the genomic RNA of a positive-strand RNA virus, which we named Sclerotinia sclerotiorum RNA virus L (SsRV-L). As far as we know, this is the first report of a positive-strand RNA mycovirus that is related to a human virus. Phylogenetic and sequence analyses of the conserved motifs of the RNA replicase of SsRV-L showed that it clustered with the rubi-like viruses and that it is related to the plant clostero-, beny- and tobamoviruses and to the insect omegatetraviruses. Considering the fact that these related alphavirus-like positive-strand RNA viruses infect a wide variety of organisms, these findings suggest that the ancestral positive-strand RNA viruses might be of ancient origin and/or they might have radiated horizontally among vertebrates, insects, plants, and fungi.


mSystems ◽  
2021 ◽  
Author(s):  
Rohit Verma ◽  
Sandhini Saha ◽  
Shiv Kumar ◽  
Shailendra Mani ◽  
Tushar Kanti Maiti ◽  
...  

Replication of a positive-strand RNA virus involves an RNA-protein complex consisting of viral genomic RNA, host RNA(s), virus-encoded proteins, and host proteins. Dissecting out individual components of the replication complex will help decode the mechanism of viral replication. 5′ and 3′ UTRs in positive-strand RNA viruses play essential regulatory roles in virus replication.


mBio ◽  
2016 ◽  
Vol 7 (6) ◽  
Author(s):  
Diede Oudshoorn ◽  
Barbara van der Hoeven ◽  
Ronald W. A. L. Limpens ◽  
Corrine Beugeling ◽  
Eric J. Snijder ◽  
...  

ABSTRACTInfection with nidoviruses like corona- and arteriviruses induces a reticulovesicular network of interconnected endoplasmic reticulum (ER)-derived double-membrane vesicles (DMVs) and other membrane structures. This network is thought to accommodate the viral replication machinery and protect it from innate immune detection. We hypothesized that the innate immune response has tools to counteract the formation of these virus-induced replication organelles in order to inhibit virus replication. Here we have investigated the effect of type I interferon (IFN) treatment on the formation of arterivirus-induced membrane structures. Our approach involved ectopic expression of arterivirus nonstructural proteins nsp2 and nsp3, which induce DMV formation in the absence of other viral triggers of the interferon response, such as replicating viral RNA. Thus, this setup can be used to identify immune effectors that specifically target the (formation of) virus-induced membrane structures. Using large-scale electron microscopy mosaic maps, we found that IFN-β treatment significantly reduced the formation of the membrane structures. Strikingly, we also observed abundant stretches of double-membrane sheets (a proposed intermediate of DMV formation) in IFN-β-treated samples, suggesting the disruption of DMV biogenesis. Three interferon-stimulated gene products, two of which have been reported to target the hepatitis C virus replication structures, were tested for their possible involvement, but none of them affected membrane structure formation. Our study reveals the existence of a previously unknown innate immune mechanism that antagonizes the viral hijacking of host membranes. It also provides a solid basis for further research into the poorly understood interactions between the innate immune system and virus-induced replication structures.IMPORTANCEViruses with a positive-strand RNA genome establish a membrane-associated replication organelle by hijacking and remodeling intracellular host membranes, a process deemed essential for their efficient replication. It is unknown whether the cellular innate immune system can detect and/or inhibit the formation of these membrane structures, which could be an effective mechanism to delay viral RNA replication. In this study, using an expression system that closely mimics the formation of arterivirus replication structures, we show for the first time that IFN-β treatment clearly reduces the amount of induced membrane structures. Moreover, drastic morphological changes were observed among the remaining structures, suggesting that their biogenesis was impaired. Follow-up experiments suggested that host cells contain a hitherto unknown innate antiviral mechanism, which targets this common feature of positive-strand RNA virus replication. Our study provides a strong basis for further research into the interaction of the innate immune system with membranous viral replication organelles.


FEBS Letters ◽  
1989 ◽  
Vol 243 (2) ◽  
pp. 103-114 ◽  
Author(s):  
Alexander E. Gorbalenya ◽  
Alexei P. Donchenko ◽  
Vladimir M. Blinov ◽  
Eugene V. Koonin

Sign in / Sign up

Export Citation Format

Share Document