scholarly journals Mutation E48K in PB1 Polymerase Subunit Improves Stability of a Candidate Live Attenuated Influenza B Virus Vaccine

Vaccines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 800
Author(s):  
Jongsuk Mo ◽  
Stivalis Cardenas-Garcia ◽  
Jefferson J. S. Santos ◽  
Lucas M. Ferreri ◽  
C. Joaquín Cáceres ◽  
...  

Influenza B virus (IBV) is a major respiratory pathogen of humans, particularly in the elderly and children, and vaccines are the most effective way to control it. In previous work, incorporation of two mutations (E580G, S660A) along with the addition of an HA epitope tag in the PB1 segment of B/Brisbane/60/2008 (B/Bris) resulted in an attenuated strain that was safe and effective as a live attenuated vaccine. A third attempted mutation (K391E) in PB1 was not always stable. Interestingly, viruses that maintained the K391E mutation were associated with the mutation E48K. To explore the contribution of the E48K mutation to stability of the K391E mutation, a vaccine candidate was generated by inserting both mutations, along with attenuating mutations E580G and S660A, in PB1 of B/Bris (B/Bris PB1att 4M). Serial passages of the B/Bris PB1att 4M vaccine candidate in eggs and MDCK indicated high stability. In silico structural analysis revealed a potential interaction between amino acids at positions 48 and 391. In mice, B/Bris PB1att 4M was safe and provided complete protection against homologous challenge. These results confirm the compensatory effect of mutation E48K to stabilize the K391E mutation, resulting in a safer, yet still protective, IBV LAIV vaccine.

Author(s):  
Jongsuk Mo ◽  
Stivalis Cardenas-Garcia ◽  
Jefferson J. S. Santos ◽  
Lucas M. Ferreri ◽  
C. Joaquín Cáceres ◽  
...  

Influenza B virus (IBV) is a major respiratory pathogen of humans, particularly in the elderly and children and vaccines are the most effective way to control it. In previous work, incorporation of two mutations (E580G, S660A) along with the addition of a HA epitope tag in the PB1 segment of B/Brisbane/60/2008 (B/Bris) resulted in an attenuated strain that was safe and effective as a live attenuated vaccine. A third attempted mutation (K391E) in PB1 was not always stable. Interestingly, viruses that maintained the K391E mutation were associated with the mutation E48K. To explore the contribution of the E48K mutation for stability of the K391E mutation, a vaccine candidate was generated by inserting both mutations along with attenuating mutations E580G and S660A in PB1 of B/Bris (B/Bris PB1att 4M). Serial passage of the B/Bris PB1att 4M vaccine candidate in eggs and MDCK indicated high stability. In silico structural analysis revealed a potential interaction between amino acids at positions 48 and 391. In mice, B/Bris PB1att 4M was safe and provided complete protection against homologous challenge. These results confirm the compensatory effect of mutation E48K to stabilize the K391E mutation, resulting in a safer, yet still protective, IBV LAIV vaccine.


Vaccines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 897
Author(s):  
Stivalis Cardenas-Garcia ◽  
C. Joaquín Cáceres ◽  
Aarti Jain ◽  
Ginger Geiger ◽  
Jong-Suk Mo ◽  
...  

Influenza B virus (IBV) is considered a major respiratory pathogen responsible for seasonal respiratory disease in humans, particularly severe in children and the elderly. Seasonal influenza vaccination is considered the most efficient strategy to prevent and control IBV infections. Live attenuated influenza virus vaccines (LAIVs) are thought to induce both humoral and cellular immune responses by mimicking a natural infection, but their effectiveness has recently come into question. Thus, the opportunity exists to find alternative approaches to improve overall influenza vaccine effectiveness. Two alternative IBV backbones were developed with rearranged genomes, rearranged M (FluB-RAM) and a rearranged NS (FluB-RANS). Both rearranged viruses showed temperature sensitivity in vitro compared with the WT type B/Bris strain, were genetically stable over multiple passages in embryonated chicken eggs and were attenuated in vivo in mice. In a prime-boost regime in naïve mice, both rearranged viruses induced antibodies against HA with hemagglutination inhibition titers considered of protective value. In addition, antibodies against NA and NP were readily detected with potential protective value. Upon lethal IBV challenge, mice previously vaccinated with either FluB-RAM or FluB-RANS were completely protected against clinical disease and mortality. In conclusion, genome re-arrangement renders efficacious LAIV candidates to protect mice against IBV.


Author(s):  
Stivalis Cardenas-Garcia ◽  
C. Joaquín Cáceres ◽  
Aarti Jain ◽  
Ginger Geiger ◽  
Jong-Suk Mo ◽  
...  

Influenza B virus (IBV) is considered a major respiratory pathogen responsible for seasonal respiratory disease in humans, particularly severe in children and the elderly. Seasonal influenza vaccination is considered the most efficient strategy to prevent and control IBV infections. Live attenuated influenza virus vaccines (LAIVs) are thought to induce both humoral and cellular immune responses by mimicking a natural infection, but their effectiveness have recently come into question. Thus, the opportunity exists to find alternative approaches to improve overall influenza vaccine effectiveness. Two alternative IBV backbones were developed with re-arranged genomes, re-arranged M (FluB-RAM) and a re-arranged NS (FluB-RANS). Both re-arranged viruses showed temperature sensitivity in vitro compared to the WT type B/Bris strain, were genetically stable over multiple passages in embryonated chicken eggs and were attenuated in vivo in mice. In a prime-boost regime in naïve mice, both re-arranged viruses induced antibodies against HA with hemagglutination inhibition titers considered of protective value. In addition, antibodies against NA and NP were readily detected with potential protective value. Upon lethal IBV challenge, mice previously vaccinated with either FluB-RAM or FluB-RANS were completely protected against clinical disease and mortality. In conclusion, genome re-arrangement renders efficacious LAIV candidates to protect mice against IBV.


2008 ◽  
Vol 82 (21) ◽  
pp. 10580-10590 ◽  
Author(s):  
Rong Hai ◽  
Luis Martínez-Sobrido ◽  
Kathryn A. Fraser ◽  
Juan Ayllon ◽  
Adolfo García-Sastre ◽  
...  

ABSTRACT Type B influenza viruses can cause substantial morbidity and mortality in the population, and vaccination remains by far the best means of protection against infections with these viruses. Here, we report the construction of mutant influenza B viruses for potential use as improved live-virus vaccine candidates. Employing reverse genetics, we altered the NS1 gene, which encodes a type I interferon (IFN) antagonist. The resulting NS1 mutant viruses induced IFN and, as a consequence, were found to be attenuated in vitro and in vivo. The absence of pathogenicity of the NS1 mutants in both BALB/c and C57BL/6 PKR−/− mice was confirmed. We also provide evidence that influenza B virus NS1 mutants induce a self-adjuvanted immune response and confer effective protection against challenge with both homologous and heterologous B virus strains in mice.


Vaccine ◽  
2008 ◽  
Vol 26 (7) ◽  
pp. 874-881 ◽  
Author(s):  
Sang-Uk Seo ◽  
Young-Ho Byun ◽  
Eun-Young Lee ◽  
Eun-Ju Jung ◽  
Yo Han Jang ◽  
...  

2009 ◽  
Vol 36 (3) ◽  
pp. 358-363
Author(s):  
Peng-Hui YANG ◽  
Wen-Qi AN ◽  
Xin-Fu SHI ◽  
Yue-Qiang DUAN ◽  
De-Yan LUO ◽  
...  

2016 ◽  
Vol 4 (1) ◽  
Author(s):  
Tham T. Nguyen ◽  
Mee K. Poh ◽  
Jenny Low ◽  
Shirin Kalimuddin ◽  
Koh C. Thoon ◽  
...  

Abstract Background Seeking a noninvasive method to conduct surveillance for respiratory pathogens, we sought to examine the usefulness of 2 types of off-the-shelf aerosol samplers to detect respiratory viruses in Singapore. Methods In this pilot study, we ran the aerosol samplers several times each week with patients present in the patient waiting areas at 3 primary health clinics during the months of April and May 2016. We used a SKC BioSampler with a BioLite Air Sampling Pump (run for 60 min at 8 L/min) and SKC AirChek TOUCH personal air samplers with polytetrafluoroethylene Teflon filter cassettes (run for 180 min at 5 L/min). The aerosol specimens and controls were studied with molecular assays for influenza A virus, influenza B virus, adenoviruses, and coronaviruses. Results Overall, 16 (33.3%) of the 48 specimens indicated evidence of at least 1 respiratory pathogen, with 1 (2%) positive for influenza A virus, 3 (6%) positive for influenza B virus, and 12 (25%) positive for adenovirus. Conclusions Although we were not able to correlate molecular detection with individual patient illness, patients with common acute respiratory illnesses were present during the samplings. Combined with molecular assays, it would suggest that aerosol sampling has potential as a noninvasive method for novel respiratory virus detection in clinical settings.


2013 ◽  
Vol 19 (3) ◽  
pp. 511-512 ◽  
Author(s):  
Rogier Bodewes ◽  
Danny Morick ◽  
Gerrie de Mutsert ◽  
Nynke Osinga ◽  
Theo Bestebroer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document