respiratory pathogen
Recently Published Documents


TOTAL DOCUMENTS

520
(FIVE YEARS 227)

H-INDEX

45
(FIVE YEARS 8)

Author(s):  
Laura Willen ◽  
Esra Ekinci ◽  
Lize Cuypers ◽  
Heidi Theeten ◽  
Stefanie Desmet

Streptococcus pneumoniae is an important and frequently carried respiratory pathogen that has the potential to cause serious invasive diseases, such as pneumonia, meningitis, and sepsis. Young children and older adults are among the most vulnerable to developing serious disease. With the arrival of the COVID-19 pandemic and the concomitant restrictive measures, invasive disease cases caused by respiratory bacterial species, including pneumococci, decreased substantially. Notably, the stringency of the containment measures as well as the visible reduction in the movement of people appeared to coincide with the drop in invasive disease cases. One could argue that wearing protective masks and adhering to social distancing guidelines to halt the spread of the SARS-CoV-2 virus, also led to a reduction in the person-to-person transmission of respiratory bacterial species. Although plausible, this conjecture is challenged by novel data obtained from our nasopharyngeal carriage study which is performed yearly in healthy daycare center attending children. A sustained and high pneumococcal carriage rate was observed amid periods of stringent restrictive measures. This finding prompts us to revisit the connection between nasopharyngeal colonization and invasion and invites us to look closer at the nasopharyngeal microbiome as a whole.


2022 ◽  
Vol 9 ◽  
Author(s):  
Xifeng Tang ◽  
Ge Dai ◽  
Xiaohui Jiang ◽  
Ting Wang ◽  
Huiming Sun ◽  
...  

Objective: We sought to compare the clinical characteristics of pediatric respiratory tract infection and respiratory pathogen isolations during the coronavirus disease (COVID-19) pandemic to those of cases in 2018 and 2019.Methods: Our study included all children from 28 days to 15 years old with respiratory tract infections who were admitted to the Department of Respiration, in the Children's Hospital of Soochow University, between January 2018 and December 2020. Human rhinovirus (HRV) and human metapneumovirus (hMPV) were detected by reverse transcription polymerase chain reaction (RT-PCR). Mycoplasma pneumoniae (MP) and human bocavirus (HBoV) were detected by real-time fluorescence quantitative polymerase chain reaction (qPCR); In parallel, Mycoplasma pneumoniae was detected by enzyme-linked immunosorbent assays, and bacteria were detected by culture in blood, bronchoalveolar lavage specimen, and pleural fluid.Results: Compared to 2018 and 2019, the pathogen detection rate was significantly lower in 2020. With regard to infections caused by single pathogens, in 2020, the detection rates of MP were the lowest and those of HRV were the highest when compared to those in 2018 and 2019. Meanwhile, the positive rates of respiratory syncytial virus (RSV) and hMPV reported in 2020 were less than those recorded in 2018 but similar to those recorded in 2019. Also, the 2020 rate of adenovirus (ADV) was lower than that recorded in 2019, but similar to that recorded in 2018. There were no statistical differences in the positive rates of HBoV and PIV III over the 3 years surveyed. Infections in infants were significantly less common in 2020, but no significant difference was found among children aged 1 to 3 years. The detection rate of pathogens in children old than 5 years in 2020 was significantly lower than those recorded in the previous 2 years. Notably, the pathogen detection rates in the first and second quarters of 2020 were similar to those recorded in the previous 2 years; however, the rates were reduced in the third and fourth quarters of 2020. As for co-infections, the positive rate was at its lowest in 2020. In the previous 2 years, viral–MP was the most common type of mixed infection. By contrast, in 2020, viral–viral infections were the most common combination.Conclusion: The pathogen detection rate was significantly reduced in Suzhou City during the COVID-19 pandemic. Public interventions may help to prevent respiratory pathogen infections in children.


Author(s):  
Bianca L Ferreira ◽  
Ivan Ramirez-Moral ◽  
Natasja A Otto ◽  
Reinaldo Salomão ◽  
Alex F de Vos ◽  
...  

Abstract Pseudomonas (P.) aeruginosa is a common respiratory pathogen that causes injurious airway inflammation during acute pneumonia. PPAR (peroxisome proliferator-activated receptor)-γ is involved in the regulation of metabolic and inflammatory responses in different cell types and synthetic agonists of PPAR-γ exert anti-inflammatory effects on myeloid cells in vitro and in models of inflammation in vivo. We sought to determine the effect of the PPAR-γ agonist pioglitazone on airway inflammation induced by acute P. aeruginosa pneumonia, focusing on bronchial epithelial cells. Mice pretreated with pioglitazone or vehicle (-24 and -1 hour) were infected with P. aeruginosa via the airways. Pioglitazone treatment was associated with increased expression of chemokine (Cxcl1, Cxcl2, Ccl20) and cytokine genes (Tnfa, Il6, Cfs3) in bronchial brushes obtained 6 hours after infection. This proinflammatory effect was accompanied by increased expression of Hk2 and Pfkfb3, genes encoding rate limiting enzymes of glycolysis; concurrently, the expression of Sdha, important for maintaining metabolite flux in the tricarboxylic acid cycle, was reduced in bronchial epithelial cells of pioglitazone treated-mice. Pioglitazone inhibited bronchoalveolar inflammatory responses measured in lavage fluid. These results suggest that pioglitazone exerts a selective proinflammatory effect on bronchial epithelial cells during acute P. aeruginosa pneumonia, possibly by enhancing intracellular glycolysis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bui Thi Bich Hanh ◽  
Nguyen Thanh Quang ◽  
Yujin Park ◽  
Bo Eun Heo ◽  
Seunghyeon Jeon ◽  
...  

Mycobacterium abscessus is a difficult respiratory pathogen to treat, when compared to other nontuberculus mycobacteria (NTM), due to its drug resistance. In this study, we aimed to find a new clarithromycin partner that potentiated strong, positive, synergy against M. abscessus among current anti-M. abscessus drugs, including omadacycline, amikacin, rifabutin, bedaquiline, and cefoxitine. First, we determined the minimum inhibitory concentrations required of all the drugs tested for M. abscessus subsp. abscessus CIP104536T treatment using a resazurin microplate assay. Next, the best synergistic partner for clarithromycin against M. abscessus was determined using an in vitro checkerboard combination assay. Among the drug combinations evaluated, omadacycline showed the best synergistic effect with clarithromycin, with a fractional inhibitory concentration index of 0.4. This positive effect was also observed against M. abscessus clinical isolates and anti-M. abscessus drug resistant strains. Lastly, this combination was further validated using a M. abscessus infected zebrafish model. In this model, the clarithromycin-omadacyline regimen was found to inhibit the dissemination of M. abscessus, and it significantly extended the lifespan of the M. abscessus infected zebrafish. In summation, the synergy between two anti-M. abscessus compounds, clarithromycin and omadacycline, provides an attractive foundation for a new M. abscessus treatment regimen.


Author(s):  
Katharine Uhteg ◽  
Adannaya Amadi ◽  
Michael Forman ◽  
Heba H Mostafa

Abstract Background Our understanding of the co-circulation of infrequently targeted respiratory pathogens and their contribution to symptoms during the COVID-19 pandemic is currently limited. This research aims at 1) understanding the epidemiology of respiratory pathogens since the start of the pandemic, 2) assessing the contribution of non-SARS-CoV-2/influenza/RSV respiratory pathogens to symptoms, and 3) evaluating coinfection rates in SARS-CoV-2 positive patients, both vaccinated and unvaccinated. Methods Retrospective analysis of respiratory pathogens identified by the Johns Hopkins Diagnostic Laboratory between December 2019 and October 2021 was performed. In addition, we assessed the contribution of respiratory pathogens other than SARS-CoV-2 to symptomatic disease by re-testing two cohorts of specimens that were 1) collected from symptomatic patients and 2) received limited respiratory pathogen testing. The first cohort was patients tested negative by the standard of care SARS-CoV-2/influenza/RSV testing. The second was a cohort of SARS-CoV-2 positive symptomatic fully COVID-19 immunized and unimmunized patients. Results Between December 2019 and October 2021, a total of 11,806, 62,829, and 579,666 specimens were tested for an extended respiratory panel, influenza/RSV/with or without SARS-CoV-2 panel, or SARS-CoV-2, respectively. Positivity rates of different targets differed between different months and were impacted by the COVID-19 pandemic. The SARS-CoV-2 negative cohort had 8.5% positivity for other respiratory pathogens that included primarily enterovirus/rhinovirus (5.8%). In the SARS-CoV-2 positive cohort, no other respiratory pathogens were detected. Conclusions The COVID-19 pandemic impacted the circulation of certain respiratory pathogens. Other respiratory viral pathogens were associated with symptomatic infections; however, coinfections with SARS-CoV-2 were highly uncommon.


2021 ◽  
Vol 68 (1) ◽  
Author(s):  
Luisa Fischer ◽  
Franca Möller Palau-Ribes ◽  
Silke Kipper ◽  
Michael Weiss ◽  
Conny Landgraf ◽  
...  

AbstractMycoplasma spp. are important pathogens in poultry and cause high economic losses for poultry industry worldwide. In other bird species (e.g. white storks, birds of prey, and several waterfowl species), Mycoplasma spp. are regularly found in healthy individuals, hence, considered apathogenic or part of the microbiota of the upper respiratory tract. However, as Mycoplasma spp. are absent in healthy individuals of some wild bird species, they might play a role as respiratory pathogen in these bird species, e.g. Mycoplasma gallisepticum in house finches. The knowledge on the occurrence of Mycoplasma spp. in wild birds is limited. To evaluate the relevance of Mycoplasma spp. in free-ranging nightingales and tits, 172 wild caught birds were screened for the presence of mycoplasmas. The birds were sampled via choanal swabs and examined via molecular methods (n = 172) and, when possible, via culture (n = 142). The Mycoplasma sp. was determined by sequencing the 16S rRNA gene and 16S-23S Intergenic Transcribed Spacer Region. All birds were tested negative for mycoplasmas via PCR and/or mycoplasmal culture. Hence, free-ranging nightingales and tits do not show any mycoplasma in their microbial flora of the respiratory tract. Therefore, these songbird species may suffer from clinical mycoplasmosis when being infected. We hypothesize that birds relying on their vocal ability for reproduction have excluded mycoplasmas from their respiratory flora compared to other bird species.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
HoangDinh Huynh ◽  
Ruth Levitz ◽  
Rong Huang ◽  
Jeffrey S. Kahn

AbstractTherapeutic interventions targeting viral infections remain a significant challenge for both the medical and scientific communities. While specific antiviral agents have shown success as therapeutics, viral resistance inevitably develops, making many of these approaches ineffective. This inescapable obstacle warrants alternative approaches, such as the targeting of host cellular factors. Respiratory syncytial virus (RSV), the major respiratory pathogen of infants and children worldwide, causes respiratory tract infection ranging from mild upper respiratory tract symptoms to severe life-threatening lower respiratory tract disease. Despite the fact that the molecular biology of the virus, which was originally discovered in 1956, is well described, there is no vaccine or effective antiviral treatment against RSV infection. Here, we demonstrate that targeting host factors, specifically, mTOR signaling, reduces RSV protein production and generation of infectious progeny virus. Further, we show that this approach can be generalizable as inhibition of mTOR kinases reduces coronavirus gene expression, mRNA transcription and protein production. Overall, defining virus replication-dependent host functions may be an effective means to combat viral infections, particularly in the absence of antiviral drugs.


2021 ◽  
Vol 65 (4) ◽  
pp. 20-30
Author(s):  
A. C. Berge ◽  
T. Jozan ◽  
C. Levesque ◽  
G. Vertenten

Abstract Bovine Respiratory Syncytial Virus (BRSV), Bovine Parainfluenza 3 (BPI3) and Mannheimia haemolytica (Mh) are major respiratory pathogens in the bovine respiratory disease complex. It is important to optimize passive and active immunity to these pathogens early in life to reduce clinical and subclinical productivity losses. The administration of inactivated, adjuvanted and multivalent vaccines, such as Bovilis® Bovipast RSP (Bovipast), and Bovalto® Respi 3 (Bovalto) to calves, may enhance cellular and humoral immunity against BRSV, BPI3 and Mh. A field trial evaluated the immune responses to these three agents in the first year of life in 12 Bovipast and 13 Bovalto vaccinated calves, and 5 negative control calves. Calves were vaccinated starting at 2 weeks of age and revaccinated 4 weeks later (primo vaccination). A booster vaccination was given at approximately 10 months of age. Serum samples were taken at time intervals up to 6 months after primo vaccination and up to 1 month after the booster vaccination. BRSV serum titres were evaluated using a serum neutralisation assay (SN), and BRSV, BPI3 and Mh titres were evaluated using a commercial enzyme linked immunosorbent assay (ELISA) test. Serum antibodies after primo and booster vaccinations in the individual calves were evaluated by calculating the areas under the curve (AUC) of the Log2 transformed BRSV SN titres and the optic density measures of the ELISA tests for BRSV, BPI3 and Mh. Multivariate general linear models were used to evaluate the influence of the vaccination on the AUC of the serum measures within 6 months after the primo vaccination. Similarly, models evaluated the AUC of the serum measures after the booster vaccination. The Bovipast vaccinated calves had significantly higher SN and ELISA titres AUC following the primo vaccination and booster vaccinations compared to the negative control calves and the Bovalto vaccinated calves. The Bovalto vaccinated calves did not have a significantly different BRSV SN and ELISA titres AUC response after the primo or booster vaccinations compared to the negative control calves. The serum antibody responses to BPI3 and Mh in the vaccinated calves were less pronounced than the Bovipast BRSV antibody response. Bovipast and Boval- to vaccinated calves mounted a significantly higher AUC ELISA OD for both BPI3 and Mh and the highest AUC was measured in the Bovipast vaccinated calves. This study indicated that early vaccinations of calves with multivalent adjuvanted inactivated BRD vaccines, such as Bovilis® Bovipast RSP can elicit a humoral response with a cellular-mediated memory effect as indicated by the booster vaccination.


Author(s):  
Jonathan D. Baghdadi ◽  
Jerry M. Yang ◽  
Amanda Lynen ◽  
Scott Sorongon ◽  
Anthony D. Harris ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document