scholarly journals A Generalized Index for the Assessment of Helicopter Pilot Vibration Exposure

Vibration ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 133-150
Author(s):  
Aykut Tamer ◽  
Andrea Zanoni ◽  
Alessandro Cocco ◽  
Pierangelo Masarati

Helicopters are known to exhibit higher vibratory levels compared to fixed-wing aircraft. The consequences of vibrations depend on the affected helicopter component or subject. Specifically, pilots are in contact with several parts of the helicopter; vibrations can spoil the pilot-vehicle interaction. To evaluate the effects of vibration exposure on pilots, comfort levels resulting from whole-body vibration are computed. However, specific body parts and organs, e.g., hands, feet, and eyes are also adversely affected, with undesirable effects on piloting quality. Therefore, a detailed assessment is necessary for a more accurate estimation of pilot vibration exposure when comparing different configurations, tracking changes during design, and determining the safety of the flight envelope. A generalized assessment is presented by considering vibrations at the seat surface, hand-grip of controls, eyes, and feet. The suggested vibration measure includes comfort, handling, feet-contact, and vision in a single formulation. It is illustrated by coupling a high-fidelity biodynamic model of the pilot to a helicopter aeroservoelastic model in a comprehensive simulation environment. Using appropriate modeling techniques, vibration exposure of helicopter pilots could be evaluated during all stages of design, to achieve a more comfortable and safer flying environment.

Author(s):  
Harish Kumar Banga ◽  
Pankaj Goel ◽  
Raman Kumar ◽  
Vikas Kumar ◽  
Parveen Kalra ◽  
...  

The use of dental hand pieces endanger dentists to vibration exposure as they are subjected to very high amplitude and vibration frequency. This paper has envisaged a comparative analysis of vibration amplitudes and transmissibility during idling and drilling with micro motor (MM) and air-turbine (AT) hand pieces. The study aims to identify the mean difference in vibration amplitudes during idling, explore different grasp forces while drilling with irrigant injection by the dentist, and various vibration transmission of these hand pieces. The study utilized 22 separate frequency resonances on two new and eight used MMs and two new and eight used ATs of different brands by observing the investigator at 16 different dentist clinics. The study adopted a descriptive research design with non–probability sampling techniques for selecting dentists and hand pieces. Statistical methods like Levene Test of Homogeneity, Welch ANOVA, independent t-test, and Games–Howell test were utilized with SPSS version 22 and MS-Excel. The results reveal that vibration amplitudes and vibration transmissibility when measured at position 2 are higher than in another position 1. Vibrations during idling for used MMs are more than AT hand pieces, and the used MM (MUD) and used AT (AUA) hand pieces differ due to their obsolescence and over-usage. Vibration amplitudes increase every time with the tightening of grasping of the hand piece. Vibration amplitudes for each grasping style of MM hand piece differ from all other grasping styles of AT hand pieces. Routine exposure to consistent vibrations has ill physical, mental, and psychological effects on dentists. The used hand pieces more hazardous as compared to newer ones. The study suggests that these hand pieces must be replaced periodically, sufficient to break between two operations, especially after every hand piece usage. Hence, the present research work can be further extended by creating some control groups among dentists and then studying the vibration amplitude exposure of various dental hand pieces and subsequent transmissibility to their body parts.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 696
Author(s):  
Eun Ji Choi ◽  
Jin Woo Moon ◽  
Ji-hoon Han ◽  
Yongseok Yoo

The type of occupant activities is a significantly important factor to determine indoor thermal comfort; thus, an accurate method to estimate occupant activity needs to be developed. The purpose of this study was to develop a deep neural network (DNN) model for estimating the joint location of diverse human activities, which will be used to provide a comfortable thermal environment. The DNN model was trained with images to estimate 14 joints of a person performing 10 common indoor activities. The DNN contained numerous shortcut connections for efficient training and had two stages of sequential and parallel layers for accurate joint localization. Estimation accuracy was quantified using the mean squared error (MSE) for the estimated joints and the percentage of correct parts (PCP) for the body parts. The results show that the joint MSEs for the head and neck were lowest, and the PCP was highest for the torso. The PCP for individual activities ranged from 0.71 to 0.92, while typing and standing in a relaxed manner were the activities with the highest PCP. Estimation accuracy was higher for relatively still activities and lower for activities involving wide-ranging arm or leg motion. This study thus highlights the potential for the accurate estimation of occupant indoor activities by proposing a novel DNN model. This approach holds significant promise for finding the actual type of occupant activities and for use in target indoor applications related to thermal comfort in buildings.


Ergonomics ◽  
2016 ◽  
Vol 60 (8) ◽  
pp. 1064-1073 ◽  
Author(s):  
Xiaoke Zeng ◽  
Aaron M. Kociolek ◽  
Muhammad Idrees Khan ◽  
Stephan Milosavljevic ◽  
Brenna Bath ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document