scholarly journals A Classification Method for Fish Swimming Behaviors under Incremental Water Velocity for Fishway Hydraulic Design

Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2131 ◽  
Author(s):  
Mu ◽  
Cao ◽  
Gong ◽  
Baiyin ◽  
Li

In fishway design, the combination of fish swimming behaviors and suitable fishway hydraulic characteristics increases the fish passage efficiency. In this study, the most representative grass carp among the “four major Chinese carps” was selected. Under conditions similar to the time period for feeding migration, juvenile grass carps were targeted to study the swimming characteristic indicators (i.e., critical and burst swimming speeds) and swimming behaviors that were closely associated with fishway hydraulic design using the incremental water velocity method in a homemade test water tank. (1) The study results reveal that both the absolute critical (Ucrit) and burst (Uburst) swimming speeds increased linearly with increasing body length and both the relative critical (U’crit) and burst (U′burst) swimming speeds decreased linearly with increasing body length. There existed a quantitative relationship between Uburst and Ucrit, which could facilitate the fishway hydraulic design. (2) This study analyzed the effects of water velocity changes on fish swimming behaviors and proposed a classification method for four fish swimming behaviors—swimming freely, staying, dashing at a long distance, and dashing at a short distance—of tested fish during the process of adapting to water velocity changes interspersed with one another. The entire swimming process under the incremental water velocity was divided into four stages. (3) This study suggests that the maximum water velocity of the mainstream in a fishway using grass carp as the major passage fish should not exceed 52–60% Uburst at stage 1. For the high-water velocity areas of a fishway, such as vertical slots and orifices, the optimal water velocity should not be higher than 76–79% Uburst at stage 2 and should absolutely not exceed 90–96% Uburst at stage 3.

2021 ◽  
Vol 13 (3) ◽  
pp. 1575
Author(s):  
Junjun Tan ◽  
Hong Li ◽  
Wentao Guo ◽  
Honglin Tan ◽  
Senfan Ke ◽  
...  

Anthropogenic engineered structures alter the local ecological connectivity of river and survival habitat of native fishes. The swimming performance is critical for establishing fish passage or fish habitat. This study evaluated the swimming performance of four carps (black carp, grass carp, silver carp and bighead carp) with smaller body lengths (1.0–9.0 cm) in a swimming flume. The results showed that the critical and burst swimming speed (m/s) of the four carps increased with the increased body length, and the relative (critical and burst) swimming speed (the critical and burst swimming speed divided by the body length, BL/s) decreases with body length. The critical and burst swimming speed of each species at two individual length groups (1.0–5.0 cm, 5.1–9.0 cm) was significantly different (p < 0.05), and the water velocities in fish passage should be less than the fish burst swimming speed. The results further provided the swimming performance data of juvenile carps and provided technical reference for the construction of fish passage and the restoration of ecological habitat.


2021 ◽  
pp. 104521
Author(s):  
Filipe Borges ◽  
Mônica Muzzette ◽  
Luiz Eduardo Queiroz ◽  
Bruno Pereira-Dias ◽  
Roberto Dias ◽  
...  

2018 ◽  
Author(s):  
Jabin R. Watson ◽  
Harriet R. Goodrich ◽  
Rebecca L. Cramp ◽  
Matthew A. Gordos ◽  
Craig E. Franklin

SignificanceHabitat fragmentation is a significant contributor to the worldwide decline of freshwater ecosystem health, the most pervasive cause of which is culverts. Culverts act as a barrier to fish movement, impacting feeding, predator avoidance, spawning, and community structures. Here we show that a common remediation strategy that involves baffles, is detrimental to the successful passage of small bodied and juvenile fish at high velocities. To remedy this widespread problem, we present a novel remediation design that benefits a range of small-bodied species and juvenile fish at the same high velocities, regardless of morphology or ecological niche. The application of this remediation design may be expanded to any smooth surfaced anthropogenic structure, to improve fish passage and restore ecosystem functionality.AbstractCulverts are a major cause of habitat fragmentation in freshwater ecosystems, are a barrier to fish movement, and are regarded as a significant contributor in the decline of freshwater fish populations globally. To try to address this, various culvert remediation designs have been implemented, including the installation of vertical baffles and the provision of naturalistic (rock) substrates. While remediation strategies generally aim to reduce the velocity of water flowing through the structure, there is often resistance to their use because the resultant reduction in culvert discharge can negatively impact upstream flooding while also resulting in debris clogging and increased culvert maintenance costs. In addition, baffles markedly increase water turbulence that may be detrimental to passage by some fish species or size classes. Here we present some novel remediation designs that exploit the reduced water velocity in boundary layers along the culvert wall to enhance fish passage without significantly compromising discharge capacity. These longitudinal designs produce an expanded reduced velocity zone along the culvert margins that generate minimal turbulence. We show that these novel designs are significantly advantageous to the swimming endurance and traversability for six small-bodied Australian fish species. We also provide data on how and why some culvert baffle designs may impede small-bodied fish passage. This data scales with increasing water velocity, encompassing inter-specific differences in swimming capacity. These results have broad implications for fish community structure and the requirement of juvenile cohort of large-bodied commercially important species where baffles have been implemented to facilitate fish passage.


2012 ◽  
Vol 36 (0A) ◽  
pp. 187-196
Author(s):  
Abdulmotalib J. Al-Rudainy

The aim of this study is to detected the morphology of the alimentary canal in twofreshwater fish species, Gattan Barbus xanthopterus and Grass carp Ctenopharyngodo idellawhich belonged to cyprinidae.. Increasing in mouth width with body length. Generallypharyngeal teeth arranged according to the following formulas. Gattan : 4-3-2 and 2-3-4Grass carp: 2-5 and 4-2. Variations in the shape, size of pharyngeal teeth were noticed. Theyappear short and wide compact in gattan, but hard and serrated, comb like in grass carp.Different intestinal length were seen indicating differ in feeding natures.


2017 ◽  
Author(s):  
Yuan Xi ◽  
Jiang Qing ◽  
Xu Meng ◽  
Tu Zhi-ying ◽  
Zhou Yi-hong ◽  
...  

AbstractBaffles were incorporated into the swim chamber of a flume-type swimming respirometer, and the effect of vertical slit turbulence on the swimming behavior and metabolism of juvenile grass carp were investigated. Results showed a significant lower TBF in turbulent flow than in laminar flow (p< 0.05). However, differences in TBF at different inlet velocities were not significant (p> 0.05), whether the fish passed through the baffles or not. In turbulent flow, the residence time ratios of test fish at different flow zone were low water velocity > medium velocity > high velocity. Oxygen consumption rate (MO2) increased with flow velocity and was higher in turbulent flow than in laminar flow. Further, the speed exponent c, in turbulent flow, was significantly higher than in laminar flow, indicated a decrease swimming efficiency. This study of fish swimming in turbulent flow extends knowledge of fish ecology and provides data for guiding the design of hydrokinetic turbulent where needed, so preventing ecological impacts.


2012 ◽  
Vol 90 (3) ◽  
pp. 345-351 ◽  
Author(s):  
D. Deslauriers ◽  
J.D. Kieffer

Swimming performance and behaviour in fish has been shown to vary depending on the investigation method. In this study, an endurance swimming curve was generated for young-of-the-year shortnose sturgeon (Acipenser brevirostrum LeSueur, 1818) (~7 cm total length, ~2 g) and compared with values determined in a separate incremental swimming (critical swimming, Ucrit) test. Using video, tail-beat frequency (TBF) was quantified and compared for fish swimming under both swimming tests. From the endurance-curve analysis, it was found that sturgeon did not display a statistically significant burst swimming phase. Maximum sustainable swimming speed (calculated to be 18.00 cm·s–1) from the endurance curve occurred at ~80% of Ucrit (22.30 cm·s–1). TBF was similar at all speeds for both swimming tests, except at speeds approaching Ucrit, where fish displayed TBFs of 4.29 Hz for the endurance protocol and 2.26 Hz for the Ucrit protocol. TBF was more variable between individuals swimming at the same speed within the Ucrit compared with the endurance protocol. Finally, a significant negative correlation was found between TBF and Ucrit in individual fish, suggesting that station-holding may be an important energy saving strategy during swimming in this size class of sturgeon.


Sign in / Sign up

Export Citation Format

Share Document