scholarly journals Large Eddy Simulation of Near-Bed Flow and Turbulence over Roughness Elements in the Shallow Open-Channel

Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2701
Author(s):  
Zeng Zhang ◽  
S. Samuel Li

Turbulent flows in rough open-channels have complex structures near the channel-bed. The near-bed flow can cause bed erosion, channel instability, and damages to fish habitats. This paper aims to improve our understanding of the structures. Transverse square bars placed at the channel-bed form two-dimensional roughness elements. Turbulent flows over the bars are predicted using large eddy simulation (LES). The predicted flow quantities compare well with experimental data. The LES model predicts mean-flow velocity profiles that resemble those in the classic turbulent boundary layer over a flat plate and profiles that change patterns in the vicinity of roughness elements, depending on the pitch-to-roughness height ratio λ/k. The relative turbulence intensity and normalized Reynolds shear stress reach maxima of 15% and 1.2%, respectively, at λ/k = 8, compared to 9% and 0.2% at λ/k = 2. The predicted bottom boundary layers constitute a large portion of the total depth, indicating roughness effect on the flow throughout the water column. Fluid exchange between the roughness cavity and outer region occurs due to turbulence fluctuations. The fluctuations increase in intensity with increasing λ/k ratio. This ratio dictates the number of eddies in the cavity as well as their locations and shapes. It also controls turbulence stress distributions. LES can be used to explore strategies for erosion control, channel restoration, and habitat protection.

2010 ◽  
Vol 22 (12) ◽  
pp. 125104 ◽  
Author(s):  
A. Cahuzac ◽  
J. Boudet ◽  
P. Borgnat ◽  
E. Lévêque

Author(s):  
Xiaofeng Yang ◽  
Saurabh Gupta ◽  
Tang-Wei Kuo ◽  
Venkatesh Gopalakrishnan

A comparative cold flow analysis between Reynolds-averaged Navier–Stokes (RANS) and large eddy simulation (LES) cycle-averaged velocity and turbulence predictions is carried out for a single cylinder engine with a transparent combustion chamber (TCC) under motored conditions using high-speed particle image velocimetry (PIV) measurements as the reference data. Simulations are done using a commercial computationally fluid dynamics (CFD) code CONVERGE with the implementation of standard k-ε and RNG k-ε turbulent models for RANS and a one-equation eddy viscosity model for LES. The following aspects are analyzed in this study: The effects of computational domain geometry (with or without intake and exhaust plenums) on mean flow and turbulence predictions for both LES and RANS simulations. And comparison of LES versus RANS simulations in terms of their capability to predict mean flow and turbulence. Both RANS and LES full and partial geometry simulations are able to capture the overall mean flow trends qualitatively; but the intake jet structure, velocity magnitudes, turbulence magnitudes, and its distribution are more accurately predicted by LES full geometry simulations. The guideline therefore for CFD engineers is that RANS partial geometry simulations (computationally least expensive) with a RNG k-ε turbulent model and one cycle or more are good enough for capturing overall qualitative flow trends for the engineering applications. However, if one is interested in getting reasonably accurate estimates of velocity magnitudes, flow structures, turbulence magnitudes, and its distribution, they must resort to LES simulations. Furthermore, to get the most accurate turbulence distributions, one must consider running LES full geometry simulations.


Sign in / Sign up

Export Citation Format

Share Document