scholarly journals A Methodology for the Optimization of Flow Rate Injection to Looped Water Distribution Networks through Multiple Pumping Stations

Water ◽  
2016 ◽  
Vol 8 (12) ◽  
pp. 575 ◽  
Author(s):  
Christian León-Celi ◽  
Pedro Iglesias-Rey ◽  
F. Martínez-Solano ◽  
Daniel Mora-Melia
2006 ◽  
Vol 53 (4-5) ◽  
pp. 503-511 ◽  
Author(s):  
D. Misiunas ◽  
J. Vítkovský ◽  
G. Olsson ◽  
M. Lambert ◽  
A. Simpson

An algorithm for the burst detection and location in water distribution networks based on the continuous monitoring of the flow rate at the entry point of the network and the pressure at a number of points within the network is presented. The approach is designed for medium to large bursts with opening times in the order of a few minutes and is suitable for networks of relatively small size, such as district metered areas (DMAs). The burst-induced increase in the inlet flow rate is detected using the modified cumulative sum (CUSUM) change detection test. Based on parameters obtained from the CUSUM test, the burst is simulated at a number of burst candidate locations. The calculated changes in pressure at the pressure monitoring points are then compared to the measured values and the location resulting in the best fit is selected as the burst location. The EPANET steady-state hydraulic solver is utilised to simulate the flows and pressures in the network. A sensitivity-based sampling design procedure is introduced to find the optimal positions for pressure monitoring points. The proposed algorithm is tested on a case study example network and shows potential for burst detection and location in real water distribution systems.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3098
Author(s):  
Jimmy H. Gutiérrez-Bahamondes ◽  
Daniel Mora-Meliá ◽  
Pedro L. Iglesias-Rey ◽  
F. Javier Martínez-Solano ◽  
Yamisleydi Salgueiro

The investment and operating costs of pumping stations in drinking water distribution networks are some of the highest public costs in urban sectors. Generally, these systems are designed based on extreme scenarios. However, in periods of normal operation, extra energy is produced, thereby generating excess costs. To avoid this problem, this work presents a new methodology for the design of pumping stations. The proposed technique is based on the use of a setpoint curve to optimize the operating and investment costs of a station simultaneously. According to this purpose, a novel mathematical optimization model is developed. The solution output by the model includes the selection of the pumps, the dimensions of pipelines, and the optimal flow distribution among all water sources for a given network. To demonstrate the advantages of using this technique, a case study network is presented. A pseudo-genetic algorithm (PGA) is implemented to resolve the optimization model. Finally, the obtained results show that it is possible to determine the full design and operating conditions required to achieve the lowest cost in a multiple pump station network.


Author(s):  
Naoki Masuda ◽  
Fanlin Meng

Water distribution networks are hydraulic infrastructures that aim to meet water demands at their various nodes. Water flows through pipes in the network create nonlinear dynamics on networks. A desirable feature of water distribution networks is high resistance to failures and other shocks to the system. Such threats would at least transiently change the flow rate in various pipes, potentially undermining the functionality of the whole water distribution system. Here we carry out a linear stability analysis for a nonlinear dynamical system representing the flow rate through pipes that are interconnected through an arbitrary pipe network with reservoirs and consumer nodes. We show that the steady state is always locally stable and develop a method to calculate the eigenvalue that corresponds to the mode that decays the most slowly towards the equilibrium, which we use as an index for resilience of the system. We show that the proposed index is positively correlated with the recovery rate of the pipe network, which was derived from a realistic and industrially popular simulator. The present analytical framework is expected to be useful for deploying tools from nonlinear dynamics and network analysis in the design, resilience management and scenario testing of water distribution networks.


2012 ◽  
Vol 5 (1) ◽  
pp. 351-373 ◽  
Author(s):  
N. Mehzad ◽  
M. Tabesh ◽  
S. S. Hashemi ◽  
B. Ataee Kia

<p><strong>Abstract.</strong> Reliability is an important indicator to ensure the operation of Water Distribution Networks (WDNs). To optimize the operation of WDN, it is necessary to incorporate the reliability of active components (such as pumps and tanks) besides the reliability of pipes. In this research, a concept is suggested to calculate the reliability of WDNs' pumping stations. A computer code is provided in Visual Basic and is linked to EPANET2.0. To evaluate the proposed methodology a real WDN near the city of Tehran is considered. According to the obtained results, it is concluded that by increasing the demand of the WDN during a day, the reliability of pumps decrease. Therefore, it seems that decision-making is necessary if high demand hours are considered, in order to increase the reliability of the system. On the other hand, it is observed in this research that using variable speed pumps not only reduces the energy cost of the network, but also the reliability of the pumping stations with variable speed pumps is higher than single speed pumps. Therefore, using VSP is highly recommended in WDNs.</p>


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 940 ◽  
Author(s):  
Valentina Marsili ◽  
Riccardo Zarbo ◽  
Stefano Alvisi ◽  
Marco Franchini

The effectiveness of pressure-reducing valves (PRVs) for optimal pressure management of water distribution networks (WDNs) is proven, but problems and operational limitations have been highlighted by some recent experiences. In this study, we analyse the functioning of a piston-actuated pressure-reducing valve (PA-PRV) with a mechanical pilot which is subjected to low-flow regimes, a condition that is often observed in real water distribution networks. The analyses were carried out by means of laboratory tests featuring two sets of experiments, i.e., (a) by testing the behaviour of the PRV when a pre-established initial value and subsequent variation of flow rate occurs in the system and (b) by testing the PRV against a temporal series of flow rates observed at the inlet section of a real district metered area. The first set of tests showed that the PA-PRV tends not to maintain pressure at the imposed set-point and exhibits an unstable behaviour characterised by significant pressure oscillations under some flow rate conditions. The second set of laboratory tests showed that the anomalous behaviour identified in the first set of tests can occur under ordinary operational conditions of a network.


Sign in / Sign up

Export Citation Format

Share Document