scholarly journals Modeling of Utility Distribution Feeder in OpenDSS with Steady State Impact Analysis of Distributed Generation

Author(s):  
Vaidyanath Ramachandran
Author(s):  
Allie E. Auld ◽  
Jack Brouwer ◽  
Scott Samuelsen ◽  
Keyue M. Smedley

The challenges associated with incorporating a large amount of distributed generation (DG), including fuel cells, into a radial distribution feeder are examined using a Matlab/Simulink™ model. Two generic distribution feeder models are used to investigate possible scenarios where voltage problems may occur. Modern inverter topologies make ancillary features, such as on-demand reactive power generation/consumption economical to include, which expands the design space across which DG can function in the distribution system. The simulation platform enables testing of the following local control goals: DG connected with unity power factor, DG and load connected with unity power factor, DG connected with local voltage regulation (LVR), and DG connected with real power curtailment. Both the LVR and curtailment strategies can regulate the voltage of the simplest circuit case, but the circuit utilizing a substation with load drop compensation has no universal solution. Even DG with a penetration level around 10% of rated circuit power can cause overvoltage problems with load drop compensation. This implies that some degree of communication will be needed to reliably install a large amount of DG on a distribution circuit.


Author(s):  
Rajiv K. Varma ◽  
Jon Berge ◽  
I. Axente ◽  
Vinay Sharma ◽  
Ken Walsh

Sign in / Sign up

Export Citation Format

Share Document