scholarly journals Effects of Size and Size Distribution on the Magnetic Properties of Maghemite Nanoparticles and Iron-Platinum Core-Shell Nanoparticles

2015 ◽  
Author(s):  
Kelly Pisane
Nanoscale ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 4519-4529
Author(s):  
J. Mohapatra ◽  
J. Elkins ◽  
M. Xing ◽  
D. Guragain ◽  
Sanjay R. Mishra ◽  
...  

Self-assembly of nanoparticles into ordered patterns is a novel approach to build up new consolidated materials with desired collective physical properties.


2018 ◽  
Vol 29 (5) ◽  
pp. 055703 ◽  
Author(s):  
A Omelianchik ◽  
G Singh ◽  
Brigitte H McDonagh ◽  
V Rodionova ◽  
D Fiorani ◽  
...  

2019 ◽  
Vol 785 ◽  
pp. 553-556
Author(s):  
Fujun Yang ◽  
Degao Liu ◽  
Peng Xiong ◽  
Yunjie Jia ◽  
Wanjun Li ◽  
...  

2007 ◽  
Vol 601 (18) ◽  
pp. 4352-4357 ◽  
Author(s):  
O. Pana ◽  
C.M. Teodorescu ◽  
O. Chauvet ◽  
C. Payen ◽  
D. Macovei ◽  
...  

2007 ◽  
Vol 7 (1) ◽  
pp. 350-355 ◽  
Author(s):  
Shishou Kang ◽  
Shifan Shi ◽  
G. X. Miao ◽  
Zhiyong Jia ◽  
David E. Nikles ◽  
...  

Chemically synthesized FePt nanoparticles were coated with nonmagnetic SiO2 and MnO shells by sol–gel and polyol processes. TEM images show that the FePt/SiO2 nanoparticles exhibit a thick spherical shell. The size and morphology of the MnO shell can be controlled by changing the reaction temperature, the molar ratio of surfactants/Mn(acac)2, and/or the concentration of precursor. The morphology of the MnO shell can be either spherical-like or cubic-like, depending on whether the molar ratio of surfactants/Mn(acac)2 is less than or larger than 2. From XRD measurements, the spherical core/shell nanoparticles exhibit 3D random crystallographic orientation, while the cubic core/shell nanoparticles prefer (200) texture. The magnetic moment of FePt particles can be enhanced by coating with SiO2 and MnO shells. Furthermore, the agglomeration of FePt particles upon the thermal annealing can be significantly inhibited with SiO2 and MnO shells.


2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Yang Tian ◽  
Di Wu ◽  
Xiao Jia ◽  
Binbin Yu ◽  
Sihui Zhan

Fe3O4nanoparticle was synthesized in the solution involving water and ethanol. Then,α-Fe2O3shell was produced in situ on the surface of theFe3O4nanoparticle by surface oxidation in molten salts, formingα-Fe2O3/Fe3O4core-shell nanostructure. It was showed that the magnetic properties transformed from ferromagnetism to superparamagnetism after the primaryFe3O4nanoparticles were oxidized. Furthermore, the obtainedα-Fe2O3/Fe3O4core-shell nanoparticles were used to photocatalyse solution of methyl orange, and the results revealed thatα-Fe2O3/Fe3O4nanoparticles were more efficient than the self-preparedα-Fe2O3nanoparticles. At the same time, the photocatalyzer was recyclable by applying an appropriate magnetic field.


Sign in / Sign up

Export Citation Format

Share Document