scholarly journals On Behalf of Resurrection: A Second Reply to Cavin and Colombetti

2020 ◽  
Vol 2 (2) ◽  
pp. 13-24
Author(s):  
Stephen T. Davis

This essay is a reply to “The Implausibility and Low Explanatory Power of the Resurrection Hypothesis—With a Rejoinder to Stephen T. Davis” by Robert Greg Cavin and Carlos Colombetti. In it, I establish what natural laws are, what a miracle is, and how “naturalism” and “supernaturalism” differ as worldviews. Cavin and Colombetti argue that if the Standard Model of particle physics (SM) is true, then the resurrection of Jesus did not occur and physical things can only causally interact with other physical things. I argue that neither point follows.

2020 ◽  
Vol 2 (1) ◽  
pp. 28-35 ◽  
Author(s):  
Stephen T. Davis

This article is a rebuttal to Robert G. Cavin and Carlos A. Colombetti’s article, “Assessing the Resurrection Hypothesis: Problems with Craig’s Inference to the Best Explanation,” which argues that the Standard Model of current particle physics entails that non-physical things (like a supernatural God or a supernaturally resurrected body) can have no causal contact with the physical universe. As such, they argue that William Lane Craig’s resurrection hypothesis is not only incompatible with the notion of Jesus physically appearing to the disciples, but the resurrection hypothesis is significantly limited in both its explanatory scope and explanatory power. This article seeks to demonstrate why their use of the Standard Model does not logically entail a rejection of the physical resurrection of Jesus when considering the scope and limitations of science itself.


Author(s):  
Sterling P. Newberry

At the 1958 meeting of our society, then known as EMSA, the author introduced the concept of microspace and suggested its use to provide adequate information storage space and the use of electron microscope techniques to provide storage and retrieval access. At this current meeting of MSA, he wishes to suggest an additional use of the power of the electron microscope.The author has been contemplating this new use for some time and would have suggested it in the EMSA fiftieth year commemorative volume, but for page limitations. There is compelling reason to put forth this suggestion today because problems have arisen in the “Standard Model” of particle physics and funds are being greatly reduced just as we need higher energy machines to resolve these problems. Therefore, any techniques which complement or augment what we can accomplish during this austerity period with the machines at hand is worth exploring.


2019 ◽  
Author(s):  
Adib Rifqi Setiawan

Put simply, Lisa Randall’s job is to figure out how the universe works, and what it’s made of. Her contributions to theoretical particle physics include two models of space-time that bear her name. The first Randall–Sundrum model addressed a problem with the Standard Model of the universe, and the second concerned the possibility of a warped additional dimension of space. In this work, we caught up with Randall to talk about why she chose a career in physics, where she finds inspiration, and what advice she’d offer budding physicists. This article has been edited for clarity. My favourite quote in this interview is, “Figure out what you enjoy, what your talents are, and what you’re most curious to learn about.” If you insterest in her work, you can contact her on Twitter @lirarandall.


2019 ◽  
Author(s):  
Adib Rifqi Setiawan

Put simply, Lisa Randall’s job is to figure out how the universe works, and what it’s made of. Her contributions to theoretical particle physics include two models of space-time that bear her name. The first Randall–Sundrum model addressed a problem with the Standard Model of the universe, and the second concerned the possibility of a warped additional dimension of space. In this work, we caught up with Randall to talk about why she chose a career in physics, where she finds inspiration, and what advice she’d offer budding physicists. This article has been edited for clarity. My favourite quote in this interview is, “Figure out what you enjoy, what your talents are, and what you’re most curious to learn about.” If you insterest in her work, you can contact her on Twitter @lirarandall.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Azadeh Maleknejad

Abstract Upon embedding the axion-inflation in the minimal left-right symmetric gauge extension of the SM with gauge group SU(2)L × SU(2)R × U(1)B−L, [1] proposed a new particle physics model for inflation. In this work, we present a more detailed analysis. As a compelling consequence, this setup provides a new mechanism for simultaneous baryogenesis and right-handed neutrino creation by the chiral anomaly of WR in inflation. The lightest right-handed neutrino is the dark matter candidate. This setup has two unknown fundamental scales, i.e., the scale of inflation and left-right symmetry breaking SU(2)R × U(1)B−L→ U(1)Y. Sufficient matter creation demands the left-right symmetry breaking scale happens shortly after the end of inflation. Interestingly, it prefers left-right symmetry breaking scales above 1010 GeV, which is in the range suggested by the non-supersymmetric SO(10) Grand Unified Theory with an intermediate left-right symmetry scale. Although WR gauge field generates equal amounts of right-handed baryons and leptons in inflation, i.e. B − L = 0, in the Standard Model sub-sector B − LSM ≠ 0. A key aspect of this setup is that SU(2)R sphalerons are never in equilibrium, and the primordial B − LSM is conserved by the Standard Model interactions. This setup yields a deep connection between CP violation in physics of inflation and matter creation (visible and dark); hence it can naturally explain the observed coincidences among cosmological parameters, i.e., ηB ≃ 0.3Pζ and ΩDM ≃ 5ΩB. The new mechanism does not rely on the largeness of the unconstrained CP-violating phases in the neutrino sector nor fine-tuned masses for the heaviest right-handed neutrinos. The SU(2)R-axion inflation comes with a cosmological smoking gun; chiral, non-Gaussian, and blue-tilted gravitational wave background, which can be probed by future CMB missions and laser interferometer detectors.


2002 ◽  
Vol 3 (9) ◽  
pp. 1097-1106 ◽  
Author(s):  
Fawzi Boudjema ◽  
Dieter Zeppenfeld

1999 ◽  
pp. 161-187
Author(s):  
Mary K. Gaillard ◽  
Paul D. Grannis ◽  
Frank J. Sciulli

Sign in / Sign up

Export Citation Format

Share Document