Countermeasures against floor impact sound by heavy impact source of a box floor structure in a reinforced concrete wall construction testing device

2021 ◽  
Vol 263 (5) ◽  
pp. 1396-1404
Author(s):  
Ryuta Tomita ◽  
Kyoko Abe

We have performed experimental examinations for the purpose of proposing a floor finishing structure with superior effects in terms of combating heavy-weight floor impact sound. We have developed a box floor with ease of construction and excellent heavy-weight floor impact sound insulation performance and examined its effect with a 1200 × 1200 mm test piece connected to inter-noise 2020. The box floor has a floor finishing structure with anti-vibration and sound insulation measures aimed at improving measures against heavy-weight floor impact sound. We herein report the results of a basic examination on the reduction of the transmitted heavy-weight floor impact sound of a box floor structure in a reinforced concrete wall construction testing device when the area is further expanded to about 10 . As a result, with the air layer under the box floor open, the floor impact sound level was reduced by 9 dB in the 63-Hz band compared to the bare surface. In addition, with the air layer at the bottom of the BOX floor sealed, the floor impact sound level was reduced by 5 dB in the 63-Hz band compared to the bare surface.

2021 ◽  
Vol 263 (3) ◽  
pp. 3064-3072
Author(s):  
Takashi Yamauchi ◽  
Atsuo Hiramitsu ◽  
Susumu Hirakawa

The air layer between the interior finishes and the structure is used as piping and wiring space. In many cases, ceilings and dry-type double floors are commonly constructed in Japan. However, the effect of the air layer of ceilings and dry-type double floors on the heavy-weight floor impact sound insulation performance has not yet quantitatively investigated. Therefore, in this study, the same floor and ceiling structures were constructed for concrete and CLT buildings, and the heavy-weight floor impact sound was investigated. As results, it was confirmed that the reduction amount of the heavy-weight floor impact sound by the ceiling tended to be smaller in CLT buildings than in concrete buildings. However, the trends were similar. Due to the dry-type double floor structure, the heavy-weight floor impact sound level was increased in concrete building and decreased in CLT building at 63 Hz in the octave band center frequency band. Therefore, it can be said that the dry-type double floor structure can be used to improve the heavy-weight floor impact sound performance in the CLT building.


2017 ◽  
Vol 873 ◽  
pp. 237-242
Author(s):  
Hye Kyung Shin ◽  
Kyoung Woo Kim ◽  
A Yeong Jeong ◽  
Kwan Seop Yang

Sound insulation between households is properly ensured to provide a quiet residential environment in apartments. The legal requirements for sound insulation in apartments in Korea are set to meet the wall’s minimum thickness or sound insulation performance. When construction companies choose the walls that satisfy thethickness in the standards of boundary walls between households, it is difficult to know the sound insulation performance. In this study, the sound insulation performance of reinforced concrete walls is predicted according to the wall thickness criteria and analyzed through field measurements. In newly built apartments, the reinforced concrete wall’s sound insulation performance(R'w) is 56 – 66 dB, which is a similar level of the international criterion. And the sound insulation performance of the reinforced concrete wall according to thickness standards is similar to sound insulation performance standardsof Korea.


2000 ◽  
Vol 4 (3) ◽  
pp. 265-280
Author(s):  
Vincenzo Riso

In the poetics of Álvaro Siza, the enriching experience of making architecture on site has always been very important; but even though his work has been widely recognized, published and discussed, little is known about the construction strategies employed. This paper reviews Siza's use of reinforced-concrete wall construction to create, through a process of subtraction and a search for the essential, building forms of a very particular kind.


Buildings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 295
Author(s):  
Amirhossein Orumiyehei ◽  
Timothy J. Sullivan

To strengthen the resilience of our built environment, a good understanding of seismic risk is required. Probabilistic performance-based assessment is able to rigorously compute seismic risk and the advent of numerical computer-based analyses has helped with this. However, it is still a challenging process and as such, this study presents a simplified probabilistic displacement-based assessment approach for reinforced concrete wall buildings. The proposed approach is trialed by applying the methodology to 4-, 8-, and 12-story case study buildings, and results are compared with those obtained via multi-stripe analyses, with allowance for uncertainty in demand and capacity, including some allowance for modeling uncertainty. The results indicate that the proposed approach enables practitioners to practically estimate the median intensity associated with exceeding a given mechanism and the annual probability of exceeding assessment limit states. Further research to extend the simplified approach to other structural systems is recommended. Moreover, the research highlights the need for more information on the uncertainty in our strength and deformation estimates, to improve the accuracy of risk assessment procedures.


Sign in / Sign up

Export Citation Format

Share Document