Active noise control without secondary path modeling: algorithm and implementation

2021 ◽  
Vol 263 (5) ◽  
pp. 1919-1928
Author(s):  
Xing Ren ◽  
Hongwei Zhang

Active noise control (ANC) has been intensively studied for decades. The most classical ANC algorithm should be the filtered-x least mean square (FxLMS) algorithm, which needs the model of the secondary path to work. Thus, the residual error of the ANC system is closely related to the preciseness of the secondary path model. In many applications, the secondary path is often time-varying. Therefore, off-line identification of the secondary path is not applicable. However, on-line identification often requires an additional white noise as a stimulating signal of the secondary path, which will deteriorate the final noise reduction effect. This paper proposes an improved artificial bee colony (ABC) algorithm for ANC system, which does not require identification of the secondary path. In order to guarantee the convergence of the algorithm and accelerate the convergence speed, this paper introduces a variable forgetting factor into the fitness function, and improves the traditional ABC algorithm by integrating LMS algorithm into the ABC algorithm. A single channel ANC system equipped with an FPGA hardware platform is set up in an anechoic chamber, and experiments show that the proposed algorithm can produce a satisfactory noise reduction effect without modeling the secondary path.

2019 ◽  
Vol 39 (1) ◽  
pp. 190-202 ◽  
Author(s):  
Ning Yu ◽  
Zhaoxia Li ◽  
Yinfeng Wu ◽  
Renjian Feng ◽  
Bin Chen

Active noise control shows a good performance on the suppression of the low-frequency noise and hence it is widely applied. However, the traditional active noise control systems are unsatisfactory in controlling impulse noise in practical situations. A method based on the convex combination of filtered-x least mean square and filtered-x minimum kernel risk-sensitive loss adaptive algorithms (CFxLM) is presented to efficiently suppress impulse noise. Due to the simplicity of the LMS algorithm, the related filter is selected as the fast filter. Because the minimum kernel risk-sensitive loss algorithm is robust to impulse noise and can offer good convergence performance, we first apply it to the active noise control system and select the corresponding filter as the slow one. The proposed CFxLM algorithm can achieve both fast convergence and good noise reduction and any prior knowledge of reference noise is unnecessary. Extensive simulations demonstrate the superior noise reduction capability of the developed CFxLM-based active noise control system in controlling impulse noise.


2020 ◽  
Vol 11 (1) ◽  
pp. 344
Author(s):  
Pedro Ramos Lorente ◽  
Raúl Martín Ferrer ◽  
Fernando Arranz Martínez ◽  
Guillermo Palacios-Navarro

In the field of active noise control (ANC), a popular method is the modified filtered-x LMS algorithm. However, it has two drawbacks: its computational complexity higher than that of the conventional FxLMS, and its convergence rate that could still be improved. Therefore, we propose an adaptive strategy which aims at speeding up the convergence rate of an ANC system dealing with periodic disturbances. This algorithm consists in combining the organization of the filter weights in a hierarchy of subfilters of shorter length and their sequential partial updates (PU). Our contribution is threefold: (1) we provide the theoretical basis of the existence of a frequency-dependent parameter, called gain in step-size. (2) The theoretical upper bound of the step-size is compared with the limit obtained from simulations. (3) Additional experiments show that this strategy results in a fast algorithm with a computational complexity close to that of the conventional FxLMS.


2021 ◽  
Vol 69 (2) ◽  
pp. 136-145
Author(s):  
S. Roopa ◽  
S.V. Narasimhan

A stable feedback active noise control (FBANC) system with an improved performance in a broadband disturbance environment is proposed in this article. This is achieved by using a Steiglitz-McBride adaptive notch filter (SM-ANF) and robust secondary path identification (SPI) both based on variable step size Griffiths least mean square (LMS) algorithm. The broadband disturbance severely affects not only FBANC input synthesized but also the SPI.TheSM-ANFestimated signal has narrowband component that is utilized for the FBANC input synthesis. Further, the SM-ANF error has broadband component utilized to get the desired signal for SPI. The use of variable step size Griffiths gradient LMS algorithm for SPI enables the removal of broadband disturbance and non-stationary disturbance from the available desired signal for better SPI. For a narrowband noise field, the proposed FBANC improves the convergence rate significantly (20 times) and the noise reduction from 10 dB to 15 dB (50%improvement) over the conventional FBANC (without SM-ANF and variable step size Griffiths LMS adaptation for SPI).


Sign in / Sign up

Export Citation Format

Share Document