Parametric Study of the Intermediate External Bracing System of Composite Steel Box Girder Bridges

2021 ◽  
Vol 21 (1) ◽  
pp. 56-60
Author(s):  
Hawraa Sami Malik ◽  
David A. M. Jawad

During the pouring of concrete deck, the installation of external bracing between the inner and outer girders may be necessary when the bridge has sharp curve in order to control the deflection and rotation of the girders. However, it is important to minimize the number of external bracing members, as they have expensive cost and they also have opposite effects for the fatigue features of the steel tub girders. The analysis of curved box girder bridges is carried out numerically by the use of finite element method through (ANSYS 19.2) software. The curved box girder with the intermediate external diaphragms was modeled and the analysis was carried out for many parameters like external bracing sections, girders with or without concrete deck, girders with end diaphragms or without them. The study concluded that ANSYS program has a good ability in evaluating the external bracing force comparing with code equations.

2011 ◽  
Vol 243-249 ◽  
pp. 1941-1946
Author(s):  
Mu Cao ◽  
Guo Fen Li ◽  
Hua Ping Zhu

The geometric structure of steel deck plates is complex. So it is difficult to get precise results in the mechanics calculation of deck pavement with traditional methods. This paper adopts the finite element method for the mechanics analysis of the composite guss asphalt surfacing layer of curved steel box girder bridges. By taking the orthotropic steel deck and the pavement as a whole, a reasonable finite element model is established and optimized for the mechanical study of steel deck pavement. This model can be used to study the stress and deformation features of the surfacing layer. According to the common diseases in steel deck pavements and the effect of the overload and the horizontal load in braking to the pavement, this paper puts forward the comprehensive control indicators for pavement failures.


2021 ◽  
Author(s):  
Siham Kadhim Jawad

Composite box-girder bridges are recently used in modern highway urban system because of their profitable and structural aptitude advantages. North Americans Codes of Practice specify empirical equations for girder moment and shear forces in such bridges in the form of live load distribution factors. These factors were proven to be conservative in some cases and underestimate the response in other cases. Therefore, an extensive parametric study, using the finite-element modeling, was conducted to examine the key parameters that influence the load distribution factors of such bridges. A total of 276 prototype bridges were analyzed to evaluate girder bending moment, shear force and deflection distribution factors for simply-supported composite multiple box-girder bridges when subjected to CHBDC truck loading. Design parameters considered in this study were bridges span length, numbers of design lanes, number of box girders and girder spacing. Based on the data generated from parametric study, sets of simple empirical expressions were developed for bending moment; shear force and deflection distribution factors for such bridges. A correlation between the finite-element results with CHBDC and AASHTO-LRFD empirical expressions showed the former are more reliable in structural design of composite box-girder bridges.


2010 ◽  
Vol 163-167 ◽  
pp. 812-816
Author(s):  
Liang Xu ◽  
Ya Ping Wu

This paper deals with the mechanical property of a new designed bridge pavement of box girder bridges. Our concerning is the stress change at the interface between the steel deck and the pavement due to the vehicle wheel loads, which can be considered as a kind of concentration force to the pavement. The finite element method is utilized to analyze the present problem. Several simulations are carried out by taking account of different positions of the vehicle wheels in order to simulate the interface stress change under real conditions. The present results can be a helpful reference for steel-deck pavement design.


2021 ◽  
Author(s):  
Siham Kadhim Jawad

Composite box-girder bridges are recently used in modern highway urban system because of their profitable and structural aptitude advantages. North Americans Codes of Practice specify empirical equations for girder moment and shear forces in such bridges in the form of live load distribution factors. These factors were proven to be conservative in some cases and underestimate the response in other cases. Therefore, an extensive parametric study, using the finite-element modeling, was conducted to examine the key parameters that influence the load distribution factors of such bridges. A total of 276 prototype bridges were analyzed to evaluate girder bending moment, shear force and deflection distribution factors for simply-supported composite multiple box-girder bridges when subjected to CHBDC truck loading. Design parameters considered in this study were bridges span length, numbers of design lanes, number of box girders and girder spacing. Based on the data generated from parametric study, sets of simple empirical expressions were developed for bending moment; shear force and deflection distribution factors for such bridges. A correlation between the finite-element results with CHBDC and AASHTO-LRFD empirical expressions showed the former are more reliable in structural design of composite box-girder bridges.


Sign in / Sign up

Export Citation Format

Share Document