Radiation protection. Dose assessment for the monitoring of workers for internal radiation exposure

2013 ◽  
2002 ◽  
Vol 41 (06) ◽  
pp. 245-251 ◽  
Author(s):  
M. Knietsch ◽  
T. Spillmann ◽  
E.-G. Grünbaum ◽  
R. Bauer ◽  
M. Puille

SummaryAim: Establishment of radioiodine treatment of feline hyperthyroidism in veterinary routine in accordance with German radiation protection regulations. Patients and methods: 35 cats with proven hyperthyroidism were treated with 131I in a special ward. Thyroid uptake and effective halflife were determined using gammacamera dosimetry. Patients were released when measured whole body activity was below the limit defined in the German “Strahlenschutzverordnung”. Results: 17/20 cats treated with 150 MBq radioiodine and 15/15 cats treated with 250 MBq had normal thyroid function after therapy, normal values for FT3 and FT4 were reached after two and normal TSH levels after three weeks. In 14 cats normal thyroid function was confirmed by controls 3-6 months later. Thyroidal iodine uptake was 24 ± 10%, effective halflife 2.5 ± 0.7 days. Whole body activity <1 MBq was reached 13 ± 4 days after application of 131I. Radiation exposure of cat owners was estimated as 1.97 Sv/MBq for adults. Conclusion: Radioiodine therapy of feline hyper-thyroidism is highly effective and safe. It can easily be performed in accordance with German radiation protection regulations, although this requires hospitalisation for approximately two weeks. Practical considerations on radiation exposure of cat owners do not justify this long interval. Regulations for the veterinary use of radioactive substances similar to existing regulations for medical use in humans are higly desirable.


1985 ◽  
Author(s):  
M. Bamberg ◽  
D. van Beuningen ◽  
W. Gössner ◽  
Friedrich Heuck ◽  
H. Jung ◽  
...  

2008 ◽  
Vol 47 (04) ◽  
pp. 175-177 ◽  
Author(s):  
J. Dolezal

SummaryAim: To assess a radiation exposure and the quality of radiation protection concerning a nuclear medicine staff at our department as a six-year retrospective study. Therapeutic radionuclides such as 131I, 153Sm, 186Re, 32P, 90Y and diagnostic ones as a 99mTc, 201Tl, 67Ga, 111In were used. Material, method: The effective dose was evaluated in the period of 2001–2006 for nuclear medicine physicians (n = 5), technologists (n = 9) and radiopharmacists (n = 2). A personnel film dosimeter and thermoluminescent ring dosimeter for measuring (1-month periods) the personal dose equivalent Hp(10) and Hp(0,07) were used by nuclear medicine workers. The wearing of dosimeters was obligatory within the framework of a nationwide service for personal dosimetry. The total administered activity of all radionuclides during these six years at our department was 17,779 GBq (99mTc 14 708 GBq, 131I 2490 GBq, others 581 GBq). The administered activity of 99mTc was similar, but the administered activity of 131I in 2006 increased by 200%, as compared with the year 2001. Results: The mean and one standard deviation (SD) of the personal annual effective dose (mSv) for nuclear medicine physicians was 1.9 ± 0.6, 1.8 ± 0.8, 1.2 ± 0.8, 1.4 ± 0.8, 1.3 ± 0.6, 0.8 ± 0.4 and for nuclear medicine technologists was 1.9 ± 0.8, 1.7 ± 1.4, 1.0 ± 1.0, 1.1 ± 1.2, 0.9 ± 0.4 and 0.7 ± 0.2 in 2001, 2002, 2003, 2004, 2005 and 2006, respectively. The mean (n = 2, estimate of SD makes little sense) of the personal annual effective dose (mSv) for radiopharmacists was 3.2, 1.8, 0.6, 1.3, 0.6 and 0.3. Although the administered activity of 131I increased, the mean personal effective dose per year decreased during the six years. Conclusion: In all three professional groups of nuclear medicine workers a decreasing radiation exposure was found, although the administered activity of 131I increased during this six-year period. Our observations suggest successful radiation protection measures at our department.


Author(s):  
Eka Djatnika Nugraha ◽  
Masahiro Hosoda ◽  
June Mellawati ◽  
Untara Untara ◽  
Ilsa Rosianna ◽  
...  

The world community has long used natural hot springs for tourist and medicinal purposes. In Indonesia, the province of West Java, which is naturally surrounded by volcanoes, is the main destination for hot spring tourism. This paper is the first report on radon measurements in tourism natural hot spring water in Indonesia as part of radiation protection for public health. The purpose of this paper is to study the contribution of radon doses from natural hot spring water and thereby facilitate radiation protection for public health. A total of 18 water samples were measured with an electrostatic collection type radon monitor (RAD7, Durridge Co., USA). The concentration of radon in natural hot spring water samples in the West Java region, Indonesia ranges from 0.26 to 31 Bq L−1. An estimate of the annual effective dose in the natural hot spring water area ranges from 0.51 to 0.71 mSv with a mean of 0.60 mSv for workers. Meanwhile, the annual effective dose for the public ranges from 0.10 to 0.14 mSv with an average of 0.12 mSv. This value is within the range of the average committed effective dose from inhalation and terrestrial radiation for the general public, 1.7 mSv annually.


2020 ◽  
Vol 1497 ◽  
pp. 012026
Author(s):  
A Norhayati ◽  
M S Suzilawati ◽  
Z Nur Khairunisa ◽  
Y T L Raymond ◽  
A Azimawati

2015 ◽  
Vol 170 (1-4) ◽  
pp. 274-278
Author(s):  
Geert Maleux ◽  
Niki Bergans ◽  
Hilde Bosmans ◽  
Ria Bogaerts

2021 ◽  
Vol 66 (6) ◽  
pp. 102-110
Author(s):  
A. Molokanov ◽  
B. Kukhta ◽  
E. Maksimova

Purpose: Harmonization and improvement of the system for regulating the internal radiation exposure of workers and the basic requirements for ensuring radiation safety with international requirements and recommendations. Material and methods: Issues related to the development of approaches to regulation and monitoring of workers for internal radiation exposure in the process of evolution of the ICRP recommendations and the national radiation safety standards, are considered. The subject of analysis is the standardized values: dose limits for workers and permissible levels as well as directly related methods of monitoring of workers for internal radiation exposure, whose purpose is to determine the degree of compliance with the principles of radiation safety and regulatory requirements, including non-exceeding the basic dose limits and permissible levels. The permissible levels of inhalation intake of insoluble compounds (dioxide) of plutonium-239 are considered as a numerical example. Results: Based on the analysis of approaches to the regulation and monitoring of workers for internal radiation exposure for the period from 1959 to 2019, it is shown that a qualitative change in the approach occurred in the 1990s. It was due to a decrease in the number of standardized values by introducing a single dose limit for all types of exposure: the effective dose E, which takes into account the different sensitivity of organs and tissues for stochastic radiation effects (WT), using the previously accepted concepts of the equivalent dose H and groups of critical organs. From the analysis it follows that the committed effective dose is a linear transformation of the intake, linking these two quantities by the dose coefficient, which does not depend on the time during which the intake occurred, and reflects certain exposure conditions of the radionuclide intake (intake routes, parameters of aerosols and type of radionuclide compounds). It was also shown that the reference value of the function z(t) linking the measured value of activity in an organ (tissue) or in excretion products with the committed effective dose for a reference person, which is introduced for the first time in the publications of the ICRP OIR 2015-2019, makes it possible to standardize the method of measuring the normalized value of the effective dose. Based on the comparison of the predicted values of the lung and daily urine excretion activities following constant chronic inhalation intake of insoluble plutonium compounds at a rate equal annual limit of intake (ALI) during the period of occupational activity 50 years it was shown that the modern biokinetic models give a slightly lower level (on average 2 times) of the lungs exposure compared to the models of the previous generation and a proportionally lower level (on average 1.4 times) of plutonium urine excretion for the standard type of insoluble plutonium compounds S. However, for the specially defined insoluble plutonium compound, PuO2, the level of plutonium urine excretion differs significantly downward (on average 11.5 times) compared to the models of the previous generation. Conclusion: With the practical implementation of new ICRP OIR models, in particular for PuO2 compounds, additional studies should be carried out on the behavior of insoluble industrial plutonium compounds in the human body. Besides, additional possibilities should be used to determine the intake of plutonium by measuring in the human body the radionuclide Am-241, which is the Pu-241 daughter. To determine the plutonium urine excretion, the most sensitive measurement techniques should be used, having a decision threshold about fractions of mBq in a daily urine for S-type compounds and an order of magnitude lower for PuO2 compounds. This may require the development and implementation in monitoring practice the plutonium-DTPA Biokinetic Model.


Author(s):  
Nataliya Uzlenkova

The review systematized the current data on new classes of pharmacological compounds and biologically active substances in the field of radiation protection in Ukraine, as well as abroad. Methodological approaches and the importance of using appropriate animal models in the development of new pharmacological drugs for radiation protection are described, specifically in the cases when it is impossible to conduct full clinical trials on patients. Current views on the division of pharmacological agents into radioprotectors, radiomitigators, and therapeutic radiation protection agents are examined. The changes in the hematopoietic tissue, gastrointestinal tract and neurovascular system that occur after acute radiation exposure are also described. Particular attention is paid to pharmacological agents that can protect against acute exposure to ionizing radiation by limiting the risk of radiation mortality from the hematological and gastrointestinal forms of radiation syndrome. Results of the effectiveness of tolerant antioxidants with a wide spectrum of biological activity as promising agents for the prevention of acute and delayed radiation-induced pathology, in particular, in lung tissue, are presented. Possible molecular mechanisms of the radioprotective effect of pharmacological compounds on experimental models of total and local radiation exposure are discussed. The effectiveness of the therapeutic use of growth factors and recombinant cytokines in acute bone marrow suppression аfter accidental radiation exposure is shown. The possibilities of cell therapy with myeloid progenitor cells mobilized by tocopherol succinate hematopoietic/progenitor cells and bone marrow mesenchymal stromal cells in acute radiation injuries are shown. Special attention is paid to the importance of improving such methodological approaches and regulatory requirements when introducing into practice new radiation protection facilities in Ukraine. Key words: radiation protection, ionizing radiation, pharmacological agents, acute radiation syndrome. For citation: Uzlenkova NE. New pharmacological means of radiation protection (literature review). Journal of the National Academy of Medical Sciences of Ukraine. 2019;25(3) :268–77


Sign in / Sign up

Export Citation Format

Share Document