Petroleum, petrochemical and natural gas industries. Axial and centrifugal compressors and expander-compressors

2015 ◽  
Author(s):  
Matt Taher

ASME PTC-10 [2009] recognizes inaccuracies involved in using the generalized charts to calculate Schultz compressibility factors for real gas compression. However, it neither addresses a method to develop the compressibility factors, nor does it specify when to use calculated compressibility factors rather than using generalized values. Using inaccurate generalized values for Schultz compressibility factors may lead to erroneous calculation of polytropic exponents and polytropic work. This paper employs the LKP equation of state to directly calculate Schultz compressibility factors for a mixture of hydrocarbons typically found in natural gas. The results are compared with the values of compressibility factors from the generalized compressibility charts.


Author(s):  
R. H. Meier ◽  
C. S. Rhea

Experience with factory and field performance testing of centrifugal compressors in natural gas service is presented. The ability of different types of factory test arrangements to closely predict future field performance is compared. Instrumentation requirements for achievement of reasonable accuracy in field testing are defined and discussed. Major aspects of mechanical and aerodynamic performance testing are addressed.


1997 ◽  
Vol 119 (4) ◽  
pp. 934-941 ◽  
Author(s):  
A. Gelin ◽  
J.-M. Pugnet ◽  
D. Bolusset ◽  
P. Friez

During full-load shop tests under natural gas, two multistage centrifugal compressors exhibited subsynchronous vibrations. Both of them are low-flow, high-pressure, high rotational speed compressors, and are fitted with tilting pad bearings and dry gas seals. A rotating stall problem was first eliminated by a modification of the diffuser geometry. Then, aerodynamic excitations caused the rotors to operate at their stability limit, and high vibration levels were observed at the first natural frequency. A complete rotordynamics analysis was performed in order to model precisely all the fluid–structure interactions. Modifications of the rotor designs were implemented, consisting in optimizing conveniently the bearing pads, replacing the toothed labyrinth seals of the balance pistons by damping honeycomb seals, fitting them with improved shunt hole systems. In addition, the dry gas seals were found to have been damaged, due to thermal effects, and further modifications were implemented to eliminate this problem. Final full load tests demonstrated a satisfactory behavior of both centrifugal compressors.


Author(s):  
R. C. Hesje ◽  
R. A. Peterson

NOVA, An Alberta Corporation is a major Canadian energy company actively involved in natural gas transportation and marketing, petroleum, petrochemicals, manufacturing, consulting and research.


1988 ◽  
Vol 110 (2) ◽  
pp. 289-294 ◽  
Author(s):  
W. N. Shade ◽  
D. W. Legg

Explosive decompression is a phenomenon that can destroy O-ring sealing elements in high-pressure (>3.4 MPa) natural gas compressors during rapid venting to atmospheric pressure. A test rig and procedure have been developed to identify important parameters influencing O-ring seal explosive decompression failure, consistent with utilization of these seals in high-pressure centrifugal compressors. The test rig and procedure are described and comparative test results presented.


Sign in / Sign up

Export Citation Format

Share Document