Mechanical vibration. Description and determination of seated postures with reference to whole-body vibration

2012 ◽  
2020 ◽  
Vol 48 ◽  
Author(s):  
Bruna Martins Silva ◽  
Ivan Felismino Charas Santos ◽  
Sheila Canevese Rahal ◽  
Carmel Dadalto ◽  
Lais Rosa Nagai ◽  
...  

Background: Whole-Body Vibration (WBV) consists of mechanical vibration stimuli produced that propagate throughout the body by increasing the gravitational load. The WBV can increase muscle mass in dogs with muscular atrophy. As Whole-body vibration (WBV) can be used as exercise modality with no impact on the joints, the present study aimed to evaluate the effects of single session of WBV in hematobiochemical and hemogasometric parameters in adult and elderly healthy dogs. Materials, Methods & Results: Fourteen clinically healthy, neutered crossbreed male dogs, non-athlete were selected. The dogs were divided into two groups of seven dogs, according to the age group: Group I - adult dogs (GI): age between 12.0 and 84.0 months old; Group II - elderly dogs (GII): age above 84.0 months old. All dogs were submitted to a single session WBV by using a vibrating platform that delivered a vortex wave circulation as mechanical vibration. The WBV protocol used was 30 Hz frequency (3.10 mm peak displacement; 11.16 m/s2 peak acceleration; 0.29 m/s velocity), then 50 Hz (3.98 mm peak displacement; 39.75 m/s2 peak acceleration; 0.62 m/s velocity), and lastly 30 Hz (3.10 mm peak displacement; 11.16 m/s2 peak acceleration; 0.29 m/s velocity) for 5-min between de frequencies. The hematobiochemical and hemagasometric parameters were evaluated at 1-min before the WBV session (1PRE), 1-min after the WBV session (1POST), 120-min (120POST) and 24 hours after the WBV session (24hPOST). The dogs accepted well the vibration stimulus, however, elderly dogs weighting above 30 kg were more likely to sit down with increased frequency from 30 to 50 Hz. No variations of food and water intakes and gastrointestinal changes were observed after the WBV session. Hemoglobin values showed significant decrease (P = 0.0312) between 1PRE and 1POST in elderly dogs. A significant decrease (P = 0.0453) was observed in alanine aminotransferase values between 120POST and 14hPOST in adult dogs. Creatinine values had a statically decrease (P = 0.0173) between 1PRE and 24hPOST in adult dogs. However, these values remained within the reference range for dogs. Discussion: According to the literature, there are no studies related to the effects of WBV in haematobiochemical and hemogasometric parameters in adult and elderly dogs. No deleterious effects regarding to a single session of WBV were observed, however harmful effects were observed in human patients. The elderly dogs with body mass above 30 kg tried to sit during the increased frequency from 30 to 50 Hz, which was associated with the pressure exerted in their paws. No significant differences were observed in erythrogram and leukogram parameters except for hemoglobin values. Significant decline was observed in hemoglobin values in adult Beagle dogs; and were associated with hemolysis. The significant decrease in alanine aminotransferase and creatinine values did not have clinical significance. No significant alterations were identified in hemogasometric parameters but slight increase in pH values was observed in horses subjected to a 60 km run, and was associated to the loss of Cl ions in sweat. The single session of WBV by using a vibrating platform that delivered a vortex wave circulation, at 30 and 50 Hz frequencies for 5 min did not induced significant changes in hematobiochemical and hemogasometric parameters in adults and elderly healthy dogs.


2012 ◽  
Vol 12 (03) ◽  
pp. 1250047 ◽  
Author(s):  
LIN YANG ◽  
HE GONG ◽  
MING ZHANG

This study focuses on the transmissibility of whole body vibration stimuli through human body in different standing postures to explore the mechanism in which vibration stimuli could be better used as a regimen for bone loss. Five volunteers were guided to stay at three standing postures and imposed of frequency-adjustable vibration stimuli on the plantar surfaces side-alternately. Motion capture system was used to acquire the vibration signals at head, pelvis, knee up, knee down and ankle, from which the transmissibility of vibration stimuli can be obtained. The results showed that transmissibility of vibration stimuli was closely correlated with frequency and skeletal sites. Transmissibility of vibration stimuli in head was much smaller than any other skeletal sites. Transmissibility in the ankle was always in the vicinity of unit one in all the three postures for the vibration stimuli applied side-alternately on the plantar surfaces of both feet. There was an obvious peak around 9 to 11 Hz in the transmissibility curves for knee joint and pelvis. In the resonant peak, transmissibility of vibration stimuli in knee joint and pelvis both exceeded unit one and reached 150%. As the frequency increased after 11 Hz, transmissibility of vibration stimuli decayed rapidly as a function of frequency and dropped to 25% at 30 Hz. This study may help to gain insight into the interaction mechanism between mechanical vibration stimuli and the responses of human musculoskeletal system.


2021 ◽  
Author(s):  
Mario Bernardo-Filho ◽  
Danúbia da Cunha de Sá-Caputo ◽  
Adérito Seixas ◽  
Redha Taiar

Bipedalism in humans is associated with an upright spine, however, this condition is not found in other animals with that skill. This may have favored the ability to harness the influence of the gravitational forces on the body. Furthermore, it is suggested that human feet have evolved to facilitate bipedal locomotion, losing an opposable digit that grasped branches in favor of a longitudinal arch that stiffens the foot and aids bipedal gait. Gait is a repetition of sequences of body segments to move the body forward while maintaining balance. The bipedal gait favors the contact of the feet of the individual with the floor. As a result, the mechanical vibration (MV) generated during walking, running or other activity with the feet are, normally, are added to the body. In these various situations, the forces would induce the production of MV with consequent transmission to the whole body of the individual and there is the generation of whole-body vibration (WBV) exercise naturally. However, when a person has a disability, this normal addition of the MV to body does not occur. This also happens with the sedentary or bedridden individual due to illness. In this case, there are the MV yielded in vibrating platforms. The exposure of the individual to the WBV leads to physiological responses at musculoskeletal, neurological, endocrinological, and vascular levels. Considering the state of the art of this theme and the previously cited scientific information, it is plausible to assume that WBV could be a useful tool to be used on the management of individuals with neurological conditions, such as in Parkinson’s disease, stroke, cerebral palsy, multiple sclerosis, spinal cord injuries, spinocerebellar ataxia and Duchenne muscular dystrophy, and neuropathy (diabetes- and chemotherapy-related), among others. Indeed, improvements due to the WBV have been described regarding motor, and other impairments, in patients with neurological conditions, and these approaches will be presented in this chapter.


Sign in / Sign up

Export Citation Format

Share Document