resonant peak
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 42)

H-INDEX

12
(FIVE YEARS 3)

Author(s):  
Yoshiaki Nishijima ◽  
Shinya Morimoto ◽  
Armandas Balcytis ◽  
Tomoki Hashizume ◽  
Ryosuke Matsubara ◽  
...  

We demonstrate extraordinarily spectrally selective narrowband mid-infrared radiation absorbance and thermal emittance with resonant peak FWHM < 124nm at λ = 5.73 μm, corresponding to a Q-factor of ~ 92.3....


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 88
Author(s):  
Cheng-Chuan Chen ◽  
Shu-Cheng Lo ◽  
Pei-Kuen Wei

Label-free surface plasmon resonance (SPR) detection of mercuric ions in various aqueous solutions, using capped gold nanoslit arrays combined with electrochemical (EC) sensing technique, is demonstrated. The nanoslit arrays are fabricated on flexible cyclo-olefin polymer substrates by a nanoimprinting lithography method. The EC and SPR signals for the investigation of current responses and transmission SPR spectra are simultaneously measured during metal ions electrodeposition. Glycerol–water solution is studied to evaluate the resonant peak wavelength sensitivity (480.3 nm RIU−1) with a FOM of 40.0 RIU−1 and the obtained intensity sensitivity is 1819.9%. The ferrocyanide/ferricyanide redox couple performs the diffusion controlled electrochemical processes (R2 = 0.99). By investigating the SPR intensity changes and wavelength shifts of various mercuric ion concentrations, the optical properties are evaluated under chronoamperometric conditions. The sensors are evaluated in the detection range between 100 μM and 10 nM with a detection limit of 1 μM. The time dependence of SPR signals and the selectivity of 10 μM Hg2+ in the presence of 10 μM interfering metal ion species from Ca2+, Co2+, Ni2+, Na+, Cu2+, Pb2 + and Mn2+ are determined. The capped gold nanoslit arrays show the selectivity of Hg2+ and the EC sensing method is effectively utilized to aqueous Hg2+ detection. This study provides a label-free detection technique of mercuric ions and this developed system is potentially applicable to detecting chemicals and biomolecules.


2021 ◽  
Author(s):  
Sheng-Yen Hu ◽  
Wen-Chou Chen ◽  
Chien-Hsun Wang ◽  
Hsin-Ming Fu ◽  
Yuan Kang

Abstract The resonant peaks can be suppressed by damping, those effects is dependent on damping ratio of system. In this paper, we propose a scaling method to evaluate the damping ratio of hydrostatic bearings for the data from model test. This method fits specifically for the overdamping of all hydrostatic bearing. This is direct and the easiest method to obtain the damping characteristics of oil film for the lowest band before the first resonant peak. The frequency responses of acceleration per force for a single-degree-of-freedom mass-spring-damper model is used to generate the evaluation scales for the damping ratios of the modal test results of worktable mounting on hydrostatic bearing. The case study for experimental results of the impact response are evaluated for damping ratio of the hydrostatic film by these method. Furthermore, using this scaling method, the influences of three types of compensations on the damping ratio of a hydrostatic bearing are compared. The results reveal that the constant flow has the largest damping ratio, and the capillary restrictor has the smallest one.


2021 ◽  
Vol 66 (11) ◽  
pp. 936
Author(s):  
V.V. Skalozub ◽  
M.S. Dmytriiev

Nowadays, no dark matter candidates have been discovered. We consider two possible reasons for that, both related to the approach of on-peak resonance searching for. As is believed usually, a new particle suits the conditions that the ratio of the width to the mass is less than 1–3% and a narrow-width approximation (NWA) is applicable to identify such type resonant peak in the invariant mass spectrum of the collision products. In the present paper, in the framework of a generalized Yukawa model, we find out the properties of the searched particle, when its width is larger than a maximal one expected during experiments, and, so, this state could be confused with a noise. We also ascertain the values of particle’s parameters, when the NWA is not applicable and estimate the width value, when it happens. These estimations are relevant to interactions between the Standard model and dark matter particles. Such approach is focused on the role of couplings and mass values introduced in the model describing the interaction of visible and dark matters.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6603
Author(s):  
Samuel Osifeso ◽  
Suoda Chu ◽  
K. Nakkeeran

We report a statistical approach to model the resonant peak wavelength (RPW) equation(s) of a photonic crystal fibre (PCF)-based surface plasmon resonance (SPR) sensors in terms of the PCF structural parameters (air-hole diameter, pitch, core diameter and gold layer thickness) at various tolerance levels. Design of experiments (statistical tool) is used to investigate the role played by the PCF structural parameters for sensing performance evaluation—RPW, across three tolerance levels (±2%, ±5% and ±10%). Pitch of the hollow-core PCF was discovered to be the major influencing parameter for the sensing performance (RPW) of the PCF-based SPR sensor while the inner metal (gold) layer thickness and core diameter are the least contributing parameters. This novel statistical method to derive the sensing performance parameter(s) of the PCF-based SPR sensors can be applied effectively and efficiently in the designing, characterisation, tolerance analysis not only at the research level, but also in optical fibre sensor fabrication industry to improve efficiency and lower cost.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6550
Author(s):  
Junho Yeo ◽  
Jong-Ig Lee ◽  
Younghwan Kwon

An eight-bit chipless radio frequency identification tag providing humidity sensing and identification information is proposed. A compact, enhanced-sensitivity resonator based on an interdigital capacitor (IDC) structure is designed for humidity sensing, whereas seven electric-field-coupled inductor capacitor (ELC) resonators are used for identification information. These eight resonators are placed in a two-by-four array arrangement. A step-by-step investigation for the effect of varying the number of elements and array configuration on the resonant frequency and radar cross-section (RCS) magnitude of the IDC resonator is conducted. The RCS value of the resonant peak frequency for the IDC resonator increases as the number of array elements placed nearby increases due to the mutual coupling among the elements, and the increase in the RCS value becomes larger as the number of arrays increases in the vertical direction. Polyvinyl alcohol (PVA) is coated on the IDC-based resonator at a thickness of 0.02 mm. A non-reflective temperature and humidity chamber is fabricated using Styrofoam, and the relative humidity (RH) is varied from 50% to 80% in 10% intervals at 25 °C in order to measure a bistatic RCS of the proposed tag. The humidity sensing performance of the IDC resonator in the proposed tag is measured by the shift in the resonant peak frequency and the RCS value, and is compared with a single ELC resonator. Experiment results show that when RH increased from 50% to 80%, the sensitivities of both the resonant peak frequency and the RCS value of the IDC resonator were better than those of the ELC resonator. The variation in the RCS value is much larger compared to the resonant peak frequency for both IDC and ELC resonators. In addition, the resonant peak frequency and RCS value of the PVA-coated IDC-based resonator change, whereas those of the other seven resonators without a PVA coating do not change.


2021 ◽  
Vol 11 (15) ◽  
pp. 6737
Author(s):  
Yicun Yao ◽  
Yanru Xie ◽  
Nan-Kuang Chen ◽  
Ivonne Pfalzgraf ◽  
Sergiy Suntsov ◽  
...  

Resonant waveguide gratings (RWG) are widely used as on-chip refractometers due to their relatively high sensitivity to ambient refractive index changes, their possibility of parallel high-throughput detection and their easy fabrication. In the last two decades, efforts have been made to integrate RWG sensors onto fiber facets, although practical application is still hindered by the limited resonant peak intensity caused by the low coupling efficiency between the reflected beam and the fiber mode. In this work, we propose a new compact RWG fiber-optic sensor with an additional Fabry-Pérot cavity, which is directly integrated onto the tip of a single-mode fiber. By introducing such a resonant structure, a strongly enhanced peak reflectance and improved figure of merit are achieved, while, at the same time, the grating size can be greatly reduced, thus allowing for spatial multiplexing of many sensors on a tip of a single multi-core fiber. This paves the way for the development of probe-like reflective fiber-tip RWG sensors, which are of great interest for multi-channel biochemical sensing and for real-time medical diagnostics.


Author(s):  
Badri Gvasalia ◽  
◽  
Tamuna Kvachadze ◽  
Korneli Odisharia ◽  
◽  
...  

The amplitude-frequency characteristic, which determines the parameters of the PI controller for linear objects, is either a monotonically feeding function, or has one resonant peak, and practically does not have a drop at a frequency less than the resonant one. The parameters of the PI controller selected in this way ensure, that the maximum deviation of the controlled value does not exceed the set value when stepping on the input of the object.


2021 ◽  
Author(s):  
Zaky Zaky ◽  
B. Moustafa ◽  
Arafa H. Aly

Abstract The performance of one-dimensional photonic crystal for plasma cell application is studied theoretically. The geometry of the structure can detect the change in the refractive index of the plasma cells in a sample that infiltrated through the defect layer. We have obtained a variation on the resonant peak positions using the analyte defect layer with different refractive indices. The defect peak of the optimized structure is red-shifted from 2195 nm to 2322nm when the refractive index of the defect layer changes from 1.3246 to 1.3634. This indicates a high sensitivity of the device (S=3300 nm/RIU) as well as a high Q-factor (Q=103). The proposed sensor has a great potential for biosensing applications and the detection of convalescent plasma.


Sign in / Sign up

Export Citation Format

Share Document