Static design procedure for welded hollow-section joints. Recommendations

2015 ◽  
2019 ◽  
Vol 46 (9) ◽  
pp. 810-827 ◽  
Author(s):  
Jens Kuhn ◽  
Jeffrey A. Packer ◽  
YuJing Fan

An investigation is presented into full-width, rectangular hollow section (RHS) X-connections subject to transverse compression, including the effect of a compressive or tensile chord preload. A re-evaluation of world-wide experimental tests on full-width X-connections revealed considerable inaccuracy with current design recommendations, as well as significant discrepancies between them. A finite element study was hence conducted to further investigate the behaviour of such connections. A critical value of the bearing length-to-chord height ratio was found, where yielding failure of the chord webs turns into buckling failure, and this has been implemented in the subsequent design recommendation. The proposed design procedure is based on 350 finite element results, covering a wide range of chord sidewall slenderness values, bearing length values and chord stress ratios, as well as against a screened database of 125 experimental tests. The proposal is shown to offer excellent predictions and incorporates a simple reliability analysis.


1996 ◽  
Vol 23 (1) ◽  
pp. 277-286 ◽  
Author(s):  
S. Mourad ◽  
R. M. Korol ◽  
A. Ghobarah

Extended end-plate connections have been widely used in moment-resisting steel frames with W-shape columns, due to their sufficient stiffness and moment capacity. In addition, such connections are easy to install and permit good quality control. Extended end-plate connections can also be employed in moment-resisting frames with hollow structural section columns by using high strength blind bolts. These bolts have been developed for installation from one side only where the rear side of the connection is inaccessible. In this study, a quantitative procedure for detailing and designing beam extended end-plate connections for rectangular hollow structural section columns using high strength blind bolts is proposed. The design procedure is consistent with the design philosophy given in limit-state codes. The proposed design is based on the results obtained from an experimental program and an analytical study. Key words: design, end plate, connection, hollow section, blind bolts, steel, frame.


2011 ◽  
Vol 39 (4) ◽  
pp. 223-244 ◽  
Author(s):  
Y. Nakajima

Abstract The tire technology related with the computational mechanics is reviewed from the standpoint of yesterday, today, and tomorrow. Yesterday: A finite element method was developed in the 1950s as a tool of computational mechanics. In the tire manufacturers, finite element analysis (FEA) was started applying to a tire analysis in the beginning of 1970s and this was much earlier than the vehicle industry, electric industry, and others. The main reason was that construction and configurations of a tire were so complicated that analytical approach could not solve many problems related with tire mechanics. Since commercial software was not so popular in 1970s, in-house axisymmetric codes were developed for three kinds of application such as stress/strain, heat conduction, and modal analysis. Since FEA could make the stress/strain visible in a tire, the application area was mainly tire durability. Today: combining FEA with optimization techniques, the tire design procedure is drastically changed in side wall shape, tire crown shape, pitch variation, tire pattern, etc. So the computational mechanics becomes an indispensable tool for tire industry. Furthermore, an insight to improve tire performance is obtained from the optimized solution and the new technologies were created from the insight. Then, FEA is applied to various areas such as hydroplaning and snow traction based on the formulation of fluid–tire interaction. Since the computational mechanics enables us to see what we could not see, new tire patterns were developed by seeing the streamline in tire contact area and shear stress in snow in traction.Tomorrow: The computational mechanics will be applied in multidisciplinary areas and nano-scale areas to create new technologies. The environmental subjects will be more important such as rolling resistance, noise and wear.


2018 ◽  
Vol 14 (1) ◽  
pp. 6057-6061 ◽  
Author(s):  
Padmanaban M S ◽  
J Sreerambabu

A piled raft foundation consists of a thick concrete slab reinforced with steel which covers the entire contact area of the structure, in which the raft is supported by a group of piles or a number of individual piles. Bending moment on raft, differential and average settlement, pile and raft geometries are the influencing parameters of the piled raft foundation system. In this paper, a detailed review has been carried out on the issues on the raft foundation design. Also, the existing design procedure was explained.


Sign in / Sign up

Export Citation Format

Share Document