foundation design
Recently Published Documents


TOTAL DOCUMENTS

648
(FIVE YEARS 142)

H-INDEX

20
(FIVE YEARS 2)

Neutron ◽  
2022 ◽  
Vol 21 (2) ◽  
pp. 60-73
Author(s):  
Resi Aseanto ◽  
Ali Ramdani Bagaskara ◽  
Syafwandi ◽  
Agung Sumarno

The increasing number of residents in South Tangerang has an impact on increasing the need for lower housing. The development of vertical housing with the market name of flats, apartments and is the most effective anticipatory solution to overcome land prices which result in market limitations, especially for the upper middle class. This 32-storey apartment project uses a combined foundation system between drill pile foundation & raft foundation. With the combination of these two very massive systems, of course, it will have a very expensive cost to implement and take a long time to complete. In order to avoid cost overruns, the foundation design must look at the possibilities. To determine the efficiency of the combined system foundation design between pile bored foundation & raft foundation, the researchers analyzed the value of the bearing capacity and also the settlement that occurred in the existing foundation using the Poulos method, the equivalent Raft method and the Vesic method. From the results of the study, it was found that the contribution of the pile foundation bearing capacity was 24.10%. the placement of the raft foundation is 75.90% and the settlement analysis using the Poulos 8.95cm method, the 12.41cm Equivalent Raft method and the Vesic 12.1cm method, these three results are close to the maximum settlement limit.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 579
Author(s):  
Taimoor Asim ◽  
Sheikh Zahidul Islam ◽  
Arman Hemmati ◽  
Muhammad Saif Ullah Khalid

Offshore wind turbines are becoming increasingly popular due to their higher wind energy harnessing capabilities and lower visual pollution. Researchers around the globe have been reporting significant scientific advancements in offshore wind turbines technology, addressing key issues, such as aerodynamic characteristics of turbine blades, dynamic response of the turbine, structural integrity of the turbine foundation, design of the mooring cables, ground scouring and cost modelling for commercial viability. These investigations range from component-level design and analysis to system-level response and optimization using a multitude of analytical, empirical and numerical techniques. With such wide-ranging studies available in the public domain, there is a need to carry out an extensive yet critical literature review on the recent advancements in offshore wind turbine technology. Offshore wind turbine blades’ aerodynamics and the structural integrity of offshore wind turbines are of particular importance, which can lead towards system’s optimal design and operation, leading to reduced maintenance costs. Thus, in this study, our focus is to highlight key knowledge gaps in the scientific investigations on offshore wind turbines’ aerodynamic and structural response. It is envisaged that this study will pave the way for future concentrated efforts in better understanding the complex behavior of these machines.


2022 ◽  
Vol 12 (2) ◽  
pp. 685
Author(s):  
Zeljko Kos ◽  
Yevhenii Klymenko ◽  
Irina Karpiuk ◽  
Iryna Grynyova

This work presents a proposed engineering method for calculating the bearing capacity of the supporting sections of continuous monolithic reinforced concrete tape beams, which combine pressed or driven reinforced concrete piles into a single foundation design. According to the mechanics of reinforced concrete, it is recommended to consider the grillage to be a continuous reinforced concrete beam, which, as a rule, collapses according to the punching scheme above the middle support (pile caps), with the possible formation of a plastic hinge above it. The justification for the proposed method included the results of experimental studies, comparisons of the experimental tensile shear force with the results of calculations according to the design standards of developed countries, and modeling of the stress-strain state of the continuous beam grillage in the extreme span and above the middle support-pile adverse transverse load in the form of concentrated forces. The work is important, as it reveals the physical essence of the phenomenon and significantly clarifies the physical model of the operation of inclined sections over the middle support. The authors assessed the influence of design factors in continuous research elements, and on the basis of this, the work of the investigated elements under a transverse load was simulated in the Lira-Sapr PC to clarify the stress-strain state and confirm the scheme of their destruction adopted in the physical model by the finite element method in nonlinear formulation. Based on the analysis and comparison of the experimental and simulation results, a design model was proposed for bearing capacity near the supporting sections of continuous reinforced concrete beams and high grillages that is capable of adequately determining their strength.


2021 ◽  
Vol 33 (6) ◽  
pp. 287-292
Author(s):  
Jungwon Huh ◽  
Nhu Son Doan ◽  
Van Ha Mac ◽  
Van Phu Dang ◽  
Dong Hyawn Kim

Load and resistance factor design is an efficient design approach that provides a system of consistent design solutions. This study aims to determine the load and resistance factors needed for the design of breakwater foundations within a probabilistic framework. In the study, four typical types of Korean breakwaters, namely, rubble mound breakwaters, vertical composite caisson breakwaters, perforated caisson breakwaters, and horizontal composite breakwaters, are investigated. The bearing capacity of breakwater foundations under wave loading conditions is thoroughly examined. Two levels of the target reliability index (RI) of 2.5 and 3.0 are selected to implement the load and resistance factors calibration using Monte Carlo simulations with 100,000 cycles. The normalized resistance factors are found to be lower for the higher target RI as expected. Their ranges are from 0.668 to 0.687 for the target RI of 2.5 and from 0.576 to 0.634 for the target RI of 3.0.


Author(s):  
Mohit Bharat Dange

Abstract: Pile foundations are widely employed for a variety of structures on shaky ground. The importance of seismic design in ensuring the effective operation of a structure under severe seismic loading conditions cannot be overstated. For the analysis of seismic forces on a structure, IS 1893 will be employed. This research entails the choosing of a specific form of building structure. A comparison of buildings with and without pile foundations will be shown. Because of the differences in their properties, the seismic behaviour of the various structures differs. The influence of pile stiffness on the structure's seismic response will be investigated. The rigidity of the piling foundation could have an impact on the structure.With the rise in seismic activity, there may be a need for more efficient pile foundation design to withstand earthquake loads. The major goal of this study is to compare pile stiffness with changes in diameter and zone. Keywords: Pile Foundation, STAAD-Pro, Structure, Stiffness, zone, Pile Cap, Load Estimation, Pile cap, Pattern of Pile.


Author(s):  
Merlijn Hurx

Foundation-laying practices for marshy conditions have received comparatively little attention in architectural history; however, in the seventeenth century Netherlandish specialized skill and knowledge for the construction of pile foundations was recognized as being exceptional and garnered international esteem. Based on new archival material, this article provides insight into the rigorous processes of foundation design, and draws attention to its multidisciplinary nature. In addition, it sheds new light on the introduction of deep foundations, which was a major engineering innovation, providing greater stability because of the use of longer piles that reached the first solid layer deep below the surface. While Dutch expertise was directly related to the landscapes they inhabited, other factors that fostered innovation in foundation design are considered as well.


CFD Letters ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 133-149
Author(s):  
Hidayatullah Mohammad Ali ◽  
Azmin Shakrine Mohd Rafie ◽  
Syaril Azrad Md Ali ◽  
Ezanee Gires

The Magnus effect and its evolution have greatly affected the aerospace industry over the past century to date. Nevertheless, cylinder embedment onto a flat plate offers a new discovery that is yet to be investigated, specifically whether the concept could enhance the aerodynamic properties of the flat plate following the Magnus effect momentum injection. Over the past decade, the use of a rotating cylinder on an aerofoil has existed from past researches studies where the embedment has significantly increased in its aerodynamic performance better than the one without Magnus application. However, it would be hard to achieve experimental-wise as an accurate measurement and fabrication would be needed to have the same resulting effects. Here, most of the researchers would not focus deeply on the placement of the cylinder as this may increase their fabrication and testing complications. Therefore, the current study delineates the use of flat plate as the foundation design to encounter the arise matter by reducing its complication yet easy to manufacture experimentally. In this work, the model output was evaluated by using ANSYS WORKBENCH 2019 software to simulate two-dimensional flow analysis for the rotational velocities of 500 RPM and 1000 RPM, respectively. This was done for different Reynolds numbers ranging from 4.56E+05 to 2.74E+06 which implicitly implied with free stream velocities varying from 5 m/s to 30 m/s for different angles of attack between 0 to 20 degrees. Prior to developing the best model embedment, the mesh independency test was validated with an error of less than 1%. The study resulted in a remarkable trend that was noticeably up to 32% (500 RPM) and 76% (1000 RPM) better in compared to the one without momentum injection. Similarly, the high recovery led to a tremendously lower of 51% (500 RPM) and 99% (1000 RPM), respectively. In sum, these findings generated a stall angle delay of up to 26% (500 RPM) and 78% (1000 RPM) accordingly.


2021 ◽  
Vol 15 (1) ◽  
pp. 360-369
Author(s):  
Monther Abdel Hadi ◽  
Ibrahim Khliefat ◽  
Nafeth Abdelhadi ◽  
Nidhal Saada

Introduction: Jordan is awarded huge areas in the north and western part of the country in which brown and green clay is dominant. This research focuses on the problems and behaviour of the green clay only. The main problem of the green clay is its high swelling pressure which is the main cause of excessive settlement and wall cracks in buildings, especially during the wet season. Methods: This study aims to investigate the engineering properties and behaviour of the green clay deposits in the Amman area, which will serve as a guide for both geotechnical and structural engineers when preparing the foundation design. Results: Based on the consolidation test, the investigated green clay showed high swelling pressure of 3.11 kg/cm2, liquid limit (LL) of 73%, plasticity index (PI) of 40%, the shrinkage limit (SL) of 12%, and liquidity index (LI) of 0.125. The moisture content at saturation is 35.14%, while the natural moisture content is 28%, dry density is 1407 kg/m3, cohesion (C) is 0.20 kg/cm2 and unconfined compressive strength is 1.05 kg/cm2. The XRD results of the clay size fraction have confirmed the presence of the expansive clay mineral smectite as the essential clay mineral together with kaolinite. Results provide a general understanding of the behaviour and properties of the green clay, and the regression analysis showed good correlations between the liquid limit and initial moisture content with the compression index and also between the initial void ratios with the swelling index. Conclusion: Changes in the volume are due to the unsaturation level of clay when provided with initial water content.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Liang Ou ◽  
Chongsen Ma ◽  
Yun Chen ◽  
Jing Zhang

With the improvement of China’s comprehensive national strength, more and more construction enterprises began to undertake overseas construction projects. Under the premise of the epidemic situation and the increasingly severe international situation, it is of great significance to study the risk control of overseas transportation infrastructure construction. This paper constructs the risk influencing factor model of overseas transportation infrastructure development risk in the new form from six aspects, that is, decision-making risk, design and planning risk, construction risk, operation risk, government risk, and force majeure, and uses the interpretative structure model and fuzzy comprehensive evaluation method. The key factors affecting the risk of overseas transportation foundation design and development are studied, and the adaptive solutions are put forward.


Sign in / Sign up

Export Citation Format

Share Document