Rubber- or plastics-coated fabrics. Determination of tensile strength and elongation at break

2013 ◽  
Vol 681 ◽  
pp. 256-259
Author(s):  
Xiu Qi Liu ◽  
He Qin Xing ◽  
Li Li Zhao ◽  
Dan Wang

In our study, a new kind of foam composite was prepared by melt blending with PVC as the matrix and carbon black (CB) as the filler, the standard-spline was made in the dumbbell system prototype. Tensile strength and elongation at break were measured at 25°C。When the CB was added greater than 2.0%, with the increase of CB added, the determination of sample mechanical index began to decline, when the CB content was greater than 9%, tensile strength and elongation at break of the composites remained basically unchanged.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Lanlan Zhang ◽  
Yingying Zhang ◽  
Qichong Zhao ◽  
Junhao Xu ◽  
Jigang Xue

This paper selects polyvinyl chloride- (PVC-) coated fabrics to study its off-axial tensile behaviors under different off-axis angles including 0°, 15°, 30°, 45°, 60°, 75°, and 90°. In the experiment, dumbbell-shaped and strip-shaped specimens are analyzed for shape effect. The variations in the strain distribution are studied by using digital image correlation (DIC) noncontact full-field measurement system. The shape and off-axis angle of specimens are analyzed to predict the influences of shape effect. The results show that the longitudinal strain and shear strain of the coated fabrics are obviously symmetrical to the off-axis direction. The shear strain distribution of the two kinds is basically the same, but the longitudinal strain fields are different. The off-axis tensile properties of the material are obviously anisotropic and nonlinear. The tensile testing curve of the specimens mainly consists of three stages: initial linear stage, deformation strengthening stage, and stress strengthening stage. At 0°, the tensile strength is the largest and the elongation at break is the smallest. In contrast, at 45°, the elongation at break is the highest and the tensile strength was the smallest. The properties under the other off-axis angles were between these two extremes.


2014 ◽  
Vol 42 (4) ◽  
pp. 290-304
Author(s):  
Rajarajan Aiyengar ◽  
Jyoti Divecha

ABSTRACT The blends of natural rubber (NR), polybutadiene rubber (BR), and other forms of rubbers are widely used for enhancing the mechanical and physical properties of rubber compounds. Lots of work has been done in conditioning and mixing of NR/BR blends to improve the properties of its rubber compounds and end products such as tire tread. This article employs response surface methodology designed experiments in five factors; high abrasion furnace carbon black (N 330), aromatic oil, NR/BR ratio, sulfur, and N-oxydiethylene-2-benzothiazole sulfenamide for determination of combined and second order effects of the significant factors leading to simultaneous optimization of the NR/BR blend system. One of the overall optimum of eight properties existed at carbon 44 phr, oil 6.1 phr, NR/BR 78/22 phr with the following values of properties: tensile strength (22 MPa), elongation at break (528%), tear resistance (30 kg/mm), rebound resilience (67%), moderate hardness (68 International rubber hardness degrees) with low heat buildup (17 °C), permanent set (12%), and abrasion loss (57 mm3). More optimum combinations can easily be determined from the NR/BR blend system models contour plots.


Sign in / Sign up

Export Citation Format

Share Document