Studies on the Mechanical Properties of Foam CB-PVC Composite

2013 ◽  
Vol 681 ◽  
pp. 256-259
Author(s):  
Xiu Qi Liu ◽  
He Qin Xing ◽  
Li Li Zhao ◽  
Dan Wang

In our study, a new kind of foam composite was prepared by melt blending with PVC as the matrix and carbon black (CB) as the filler, the standard-spline was made in the dumbbell system prototype. Tensile strength and elongation at break were measured at 25°C。When the CB was added greater than 2.0%, with the increase of CB added, the determination of sample mechanical index began to decline, when the CB content was greater than 9%, tensile strength and elongation at break of the composites remained basically unchanged.

2012 ◽  
Vol 32 (6-7) ◽  
pp. 435-444 ◽  
Author(s):  
Hsin-Tzu Liao ◽  
Chin-San Wu

Abstract Melt blending of polylactide (PLA), poly(ε-caprolactone) (PCL), and wood flour (WF) was performed in an effort to overcome the major drawbacks (brittleness and high price) of PLA. In addition, the acrylic acid (AA)-grafted PLA70PCL30 (PLA70PCL30-g-AA) was used as the alternative for the preparation of ternary blends to improve the compatibility and the dispersability of WF within the PLA70PCL30 matrix. As expected, PCL improved the elongation at break and the toughness of PLA but decreased the tensile strength and modulus. Because the hydrophilic WF is dispersed physically in the hydrophobic PLA70PCL30 matrix, as the result of Fourier transform infrared analysis, the mechanical properties of PLA70PCL30 became noticeably worse when it was blended with WF. This problem was successfully conquered by using PLA70PCL30-g-AA to replace PLA70PCL30 due to the formation of an ester carbonyl group between PLA70PCL30-g-AA and WF. Furthermore, the PLA70PCL30-g-AA/WF blend provided a plateau tensile strength at break when the WF content was up to 50 wt%. PLA70PCL30/WF exhibited a tensile strength at break of approximately 3–25 MPa more than PLA70PCL30-g-AA/WF. By using p-cresol and tyrosinase, the enzymatic biodegradable test showed that PLA70PCL30-g-AA is somewhat more biodegradable than PLA70PCL30 because the former has better water absorption. After 16 weeks, the weight loss of the PLA70PCL30/WF (50 wt%) composite was >80%. PLA70PCL30-g-AA/WF exhibited a weight loss of approximately 1–12 wt% more than PLA70PCL30-g-AA/WF. It was also found that the addition of WF to PLA70PCL30 or PLA70PCL30-g-AA decreased the crystallinity of PLA and PCL in PLA70PCL30 or PLA70PCL30-g-AA and then increased their biodegradable property.


2013 ◽  
Vol 681 ◽  
pp. 252-255
Author(s):  
Xiu Qi Liu ◽  
He Qin Xing ◽  
Li Li Zhao ◽  
Dan Wang

In our study, a new kind of material was prepared by melt blending with PVC as the matrix and carbon black (CB) as the filler. With the amount of CB increasing, the notched impact strength of composite increased greatly, however the tensile strength declined. When the amount of CB was 30%, the notched impact strength of composite was 9.66 KJ/m2, the tensile strength dropped from 48.3MPa to 33.2MPa. The distribution of CB in the PVC matrix is relatively uniform and no large agglomeration in the PVC matrix.


2011 ◽  
Vol 380 ◽  
pp. 290-293
Author(s):  
Bing Tao Wang ◽  
Ping Zhang ◽  
De Gao

In situ melt copolycondensation was proposed to prepare biodegradable copolyester nanocomposites based on degradable components poly(L-lactic acid) (PLA), rigid segments poly(butylene terephthalate) (PBT), and nanoparticles polyhedral oligomeric silsesquioxanes (POSS). The morphologies and dispersions of two POSS nanoparticles (POSS-NH2 and POSS-PEG) in the copolyester PLABT matrix and their effects on the mechanical properties were investigated. The results demonstrated that the morphologies and dispersions of POSS-NH2 and POSS-PEG showed quite different characteristics. POSS-PEG took better dispersion in the PLABT, while POSS-NH2 had poor dispersions and formed crystalline microaggregates. Due to the good dispersion and strong interfacial adhesion of POSS-PEG with the matrix, the tensile strength and Young’s modulus were greatly improved from 6.4 and 9.6 MPa for neat PLABT up to 11.2 and 70.7 MPa for PLABT/POSS-PEG nanocomposite. Moreover, the incorporation of POSS-PEG could impart macromolecular chains good flexibility and improve the mobility of the chains, so the the elongation at break of PLABT/POSS-PEG nanocomposite dramatically increased from 190 to 350 % compared with neat PLABT.


1890 ◽  
Vol 35 (4) ◽  
pp. 947-954 ◽  
Author(s):  
A. Crichton Mitchell

Until a few years ago it was the general opinion among metallurgists that the presence of manganese in steel exceeding the proportion of 1 per cent, is prejudicial to the value of the steel, inasmuch as a higher percentage of manganese has the effect of lowering markedly its tensile strength and toughness. But in 1884, Messrs Hadfield & Company, of the Hecla Steel Works, Sheffield, exhibited, at a meeting of the Institute of Mechanical Engineers, a number of samples of steel containing upwards of 10 to 15 per cent, of manganese, and submitted the results of experiments, which showed that the samples were, in point of tensile strength and hardness, in no way inferior to steel. Again, in 1888, Mr R. A. Hadfield read to the Institute a paper on the subject, giving the details of a large number of tests, which brought to light some interesting mechanical properties of alloys of manganese and iron. Since its introduction, these alloys (and particularly that containing 10 to 15 per cent, of manganese, known as “manganese-steel”) have been studied by several physicists, and further peculiarities have been found. It appeared desirable that the thermal conductivity of so peculiar a substance should be investigated. The present paper is an account of experiments made in the Physical Laboratory, Edinburgh University, with a view to the determination of its thermal conductivity. In the reduction of such experiments a knowledge of the specific heat is necessary, hence there is also given an account of experiments whereby the specific heat was determined.


2020 ◽  
Vol 2020 ◽  
pp. 1-5
Author(s):  
Li Juan

The nanocomposites of polypropylene (PP)/graphene were prepared by melt blending. The effects of the dosage of graphene on the flow and mechanical properties of the nanocomposites were investigated. The morphologies of fracture surfaces were characterized through scanning electron microscopy (SEM). The graphene simultaneous enhanced tensile and impact properties of nanocomposites. A 3.22% increase in tensile strength, 39.8% increase in elongation at break, and 26.7% increase in impact strength are achieved by addition of only 1 wt.% of graphene loading. The morphological behavior indicates the fracture surface of PP/graphene is more rough than that of pure PP.


2013 ◽  
Vol 745-746 ◽  
pp. 436-441
Author(s):  
Pei Liu ◽  
Long Chen ◽  
Jun Xu ◽  
Mei Fang Zhu ◽  
Zong Yi Qin

Biodegradable composites were prepared by adding hyperbranched poly (ester amide) (HBPs) into poly (3-hydroxybutyrate-co-3-hydrovalerate) (PHBV) through melt blending method. It was found that the tensile strength and toughness of PHBV were simultaneously enhanced by the addition of HBPs. Compared with neat PHBV, the tensile strength of the composite increased about 23% from 20.96 to 25.87 MPa for the content of 2.5 wt.% HBPs, and more remarkable enhancement in tensile elongation at break can be achieved by about 88% for 5 wt.% HBPs. The influences of HBPs on crystallization, thermal and fracture morphologies of PHBV were further evaluated by using differential scanning calorimeter and scanning electron microscope, respectively. The decrease in the crystallinity of PHBV and high dispersion of the HBPs in PHBV matrix were observed, which should contribute to the improvement on the mechanical properties of PHBV.


2014 ◽  
Vol 496-500 ◽  
pp. 384-387
Author(s):  
Li Yan Wang ◽  
Guang Li ◽  
Li Jun Yang

Poly (trimethylene terephthalate) (PTT) /cellulose acetate butyrate (CAB) blend fibers were prepared through melt blending and spinning in this paper. The mechanical properties, dyeability, and hydroscopicity of PTT/CAB fibers were studied. The results indicated that the tensile strength of PTT / CAB blend fibers reduced slightly and the elongation at break increased with CAB content rising. And the dye uptake and moisture absorption percentage of PTT / CAB blend fibers increased as more CAB was added, i.e., in some degree, CAB added improved PTT fibers dyeability and hydroscopicity.


2013 ◽  
Vol 834-836 ◽  
pp. 237-240 ◽  
Author(s):  
Kanyakorn Pawarangkool ◽  
Wirunya Keawwattana

In this work, hydroxyapatite (HAp) was produced from crocodile bones by thermal process at 900°C. X-ray diffractometer (XRD), Fourier transform infrared spectrometer (FTIR) and Scanning electron microscope (SEM) were used to characterize the obtained HAp. Polylactic acid (PLA)/HAp composites were prepared by melt blending as follows: 95/5, 90/10 and 85/15 (weight ratio). The effect of the amount of HAp on the mechanical properties including tensile strength, modulus, elongation at break and impact strength of PLA/HAp composites was undertaken. It was found that tensile strength and elongation at break of the composites decreased with an increase of HAp content, while modulus and impact strength showed no significant effect.


2019 ◽  
Vol 801 ◽  
pp. 121-126
Author(s):  
Rapeeporn Srisuk ◽  
Laongdaw Techawinyutham ◽  
Wantana Koetniyom ◽  
Rapeephun Dangtungee

The influence of bamboo charcoal (BC) in Poly (lactic) acid (PLA) matrix as masterbatch was studied on mechanical 40:60, 50:50 and 60:40 of masterbatch. BC MBs were diluted at 1 phr, 3 phr, and 5 phr. BC showed even distribution in PLA matrix; however,, it decreased compatibility in the matrix. The infusion of BC in PLA matrix enhanced the tensile modulus; however, there was a reduction in the tensile strength and the elongation at break. It could also be ascertained that there is no signification difference in the hardness of BC/PLA composites compared with neat PLA. The addition of BC slightly decreased shear viscosity of the composites. The optimal BC content in the composites was found to be 2.82wt.% (5 phr 60:40).


2012 ◽  
Vol 488-489 ◽  
pp. 62-66
Author(s):  
Jareenuch Rojsatean ◽  
Supakij Suttireungwong ◽  
Manus Seadan

The blend of poly(styrene-co-acrylonitrile) (SAN) and natural rubber (NR) is immiscible and incompatible which lead to poor mechanical properties. Many methods can be carried out to improve the compatibility. In this work, the potential of various reactive compatibilizers in SAN and NR blend was explored. The morphological and mechanical properties were compared. The melt blending of SAN and NR were prepared in an internal mixer with various types of reactive agent such as styrene-co-maleic anhydride (SMA), maleic anhydride (MA), peroxide and mixed reactive agents. The morphological textures of the blends were investigated by scanning electron microscope. Mechanical properties including tensile strength, impact strength and elongation at break were measured. The results of morphological observations revealed that SAN/NR blend with reactive agent, the mixture of SMA and MA show the smallest and the most uniform dispersed NR particles, where the size of NR particle is about 1 µm. The mechanical properties of the blends revealed impact strength and elongation at break were increased with addition of reactive agents. SAN/NR blend with the mixture of SMA and MA showed the highest elongation at break but it had lower impact strength than the blend with SMA.


Sign in / Sign up

Export Citation Format

Share Document