Mechanical vibration. Measurement of vibration on ships

2015 ◽  
Micromachines ◽  
2017 ◽  
Vol 8 (8) ◽  
pp. 244
Author(s):  
Fei Xu ◽  
Xinyi Guo ◽  
Linyan Xu ◽  
Xuexin Duan ◽  
Hao Zhang ◽  
...  

Research ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yuyong Xiong ◽  
Songxu Li ◽  
Changzhan Gu ◽  
Guang Meng ◽  
Zhike Peng

Echolocating bats possess remarkable capability of multitarget spatial localization and micromotion sensing in a full field of view (FFOV) even in cluttered environments. Artificial technologies with such capability are highly desirable for various fields. However, current techniques such as visual sensing and laser scanning suffer from numerous fundamental problems. Here, we develop a bioinspired concept of millimeter-wave (mmWave) full-field micromotion sensing, creating a unique mmWave Bat (“mmWBat”), which can map and quantify tiny motions spanning macroscopic to μm length scales of full-field targets simultaneously and accurately. In mmWBat, we show that the micromotions can be measured via the interferometric phase evolution tracking from range-angle joint dimension, integrating with full-field localization and tricky clutter elimination. With our approach, we demonstrate the capacity to solve challenges in three disparate applications: multiperson vital sign monitoring, full-field mechanical vibration measurement, and multiple sound source localization and reconstruction (radiofrequency microphone). Our work could potentially revolutionize full-field micromotion monitoring in a wide spectrum of applications, while may inspiring novel biomimetic wireless sensing systems.


Sign in / Sign up

Export Citation Format

Share Document