Faculty Opinions recommendation of Critical role for activation of antigen-presenting cells in priming of cytotoxic T cell responses after vaccination with virus-like particles.

Author(s):  
Hans-Peter Pircher
Blood ◽  
2008 ◽  
Vol 111 (7) ◽  
pp. 3546-3552 ◽  
Author(s):  
Christian Schütz ◽  
Martin Fleck ◽  
Andreas Mackensen ◽  
Alessia Zoso ◽  
Dagmar Halbritter ◽  
...  

Abstract Several cell-based immunotherapy strategies have been developed to specifically modulate T cell–mediated immune responses. These methods frequently rely on the utilization of tolerogenic cell–based antigen-presenting cells (APCs). However, APCs are highly sensitive to cytotoxic T-cell responses, thus limiting their therapeutic capacity. Here, we describe a novel bead-based approach to modulate T-cell responses in an antigen-specific fashion. We have generated killer artificial APCs (κaAPCs) by coupling an apoptosis-inducing α-Fas (CD95) IgM mAb together with HLA-A2 Ig molecules onto beads. These κaAPCs deplete targeted antigen-specific T cells in a Fas/Fas ligand (FasL)–dependent fashion. T-cell depletion in cocultures is rapidly initiated (30 minutes), dependent on the amount of κaAPCs and independent of activation-induced cell death (AICD). κaAPCs represent a novel technology that can control T cell–mediated immune responses, and therefore has potential for use in treatment of autoimmune diseases and allograft rejection.


Immunology ◽  
2017 ◽  
Vol 152 (3) ◽  
pp. 462-471 ◽  
Author(s):  
Hua Li ◽  
Shengwen Shao ◽  
Jianshu Cai ◽  
Danielle Burner ◽  
Lingeng Lu ◽  
...  

2004 ◽  
Vol 172 (3) ◽  
pp. 1777-1785 ◽  
Author(s):  
Tazio Storni ◽  
Christiane Ruedl ◽  
Katrin Schwarz ◽  
Reto A. Schwendener ◽  
Wolfgang A. Renner ◽  
...  

Vaccines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 134
Author(s):  
Zekun Mu ◽  
Barton F. Haynes ◽  
Derek W. Cain

The SARS-CoV-2 pandemic introduced the world to a new type of vaccine based on mRNA encapsulated in lipid nanoparticles (LNPs). Instead of delivering antigenic proteins directly, an mRNA-based vaccine relies on the host’s cells to manufacture protein immunogens which, in turn, are targets for antibody and cytotoxic T cell responses. mRNA-based vaccines have been the subject of research for over three decades as a platform to protect against or treat a variety of cancers, amyloidosis and infectious diseases. In this review, we discuss mRNA-based approaches for the generation of prophylactic and therapeutic vaccines to HIV. We examine the special immunological hurdles for a vaccine to elicit broadly neutralizing antibodies and effective T cell responses to HIV. Lastly, we outline an mRNA-based HIV vaccination strategy based on the immunobiology of broadly neutralizing antibody development.


2005 ◽  
Vol 18 (4) ◽  
pp. 234-242 ◽  
Author(s):  
Silvia Garbelli ◽  
Stefania Mantovani ◽  
Belinda Palermo ◽  
Claudia Giachino

2004 ◽  
Vol 169 (12) ◽  
pp. 1322-1330 ◽  
Author(s):  
Frédéric Ebstein ◽  
Carole Sapede ◽  
Pierre-Joseph Royer ◽  
Marie Marcq ◽  
Catherine Ligeza-Poisson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document