Faculty Opinions recommendation of A kinetic framework for a mammalian RNA polymerase in vivo.

Author(s):  
Carl Thummel
Keyword(s):  
Author(s):  
Trinath Chowdhury ◽  
Gourisankar Roymahapatra ◽  
Santi M. Mandal

Background: COVID-19 is a life threatening novel corona viral infection to our civilization and spreading rapidly. Terrific efforts are generous by the researchers to search for a drug to control SARS-CoV-2. Methods: Here, a series of arsenical derivatives were optimized and analyzed with in silico study to search the inhibitor of RNA dependent RNA polymerase (RdRp), the major replication factor of SARS-CoV-2. All the optimized derivatives were blindly docked with RdRp of SARS-CoV-2 using iGEMDOCK v2.1. Results: Based on the lower idock score in the catalytic pocket of RdRp, darinaparsin (-82.52 kcal/mol) revealed most effective among them. Darinaparsin strongly binds with both Nsp9 replicase protein (-8.77 kcal/mol) and Nsp15 endoribonuclease (-8.3 kcal/mol) of SARS-CoV-2 as confirmed from the AutoDock analysis. During infection, the ssRNA of SARS-CoV2 is translated into large polyproteins forming viral replication complex by specific proteases like 3CL protease and papain protease. This is also another target to control the virus infection where darinaparsin also perform the inhibitory role to proteases of 3CL protease (-7.69 kcal/mol) and papain protease (-8.43 kcal/mol). Conclusion: In host cell, the furin protease serves as a gateway to the viral entry and darinaparsin docked with furin protease which revealed a strong binding affinity. Thus, screening of potential arsenic drugs would help in providing the fast invitro to in-vivo analysis towards development of therapeutics against SARS-CoV-2.


2005 ◽  
Vol 83 (4) ◽  
pp. 497-504 ◽  
Author(s):  
Benoit Coulombe ◽  
Marie-France Langelier

High resolution X-ray crystal structures of multisubunit RNA polymerases (RNAP) have contributed to our understanding of transcriptional mechanisms. They also provided a powerful guide for the design of experiments aimed at further characterizing the molecular stages of the transcription reaction. Our laboratory used tandem-affinity peptide purification in native conditions to isolate human RNAP II variants that had site-specific mutations in structural elements located strategically within the enzyme's catalytic center. Both in vitro and in vivo analyses of these mutants revealed novel features of the catalytic mechanisms involving this enzyme.Key words: RNA polymerase II, transcriptional mechanisms, mutational analysis, mRNA synthesis.


1982 ◽  
Vol 2 (12) ◽  
pp. 1595-1607 ◽  
Author(s):  
Timothy J. Miller ◽  
Janet E. Mertz

Purified simian virus 40 (SV40) DNA is reconstituted into chromatin and transcribed by endogenous RNA polymerase II when microinjected into nuclei ofXenopus laevisoocytes. We have correlated the kinetics of chromatin reconstitution with that of accumulation of virus-specific RNA in this system. A delay of approximately 3 h was found in the appearance of appreciable numbers of both fully supercoiled molecules and transcriptionally active templates. SV40 minichromosomes, isolated from virus-infected monkey cells with 0.2 M NaCl, also exhibited this lag in onset of transcriptional activity when microinjected into oocytes. These findings indicate that neither purified SV40 DNA nor SV40 DNA containing a full complement of nucleosomes can function as a template for transcription in vivo before association with appropriate cellular nonhistone chromosomal factors has taken place. In addition, the gradual degradation of linear SV40 DNA in oocytes was not sufficient to account for the fact that it was much less transcriptionally active than circular SV40 DNA. Taken together, these results indicate that the conformational state of the DNA can affect its ability to function as a template for transcription in vivo by RNA polymerase II. In contrast, transcription by RNA polymerase III of purified, circularized cloned DNAs encoding genes for 5S rRNA was detectable long before the injected DNAs had time to reconstitute into chromatin. Therefore, the template structural requirements for transcription in vivo by RNA polymerases II and III are different.


Sign in / Sign up

Export Citation Format

Share Document