Faculty Opinions recommendation of RasGRP4, a new mast cell-restricted Ras guanine nucleotide-releasing protein with calcium- and diacylglycerol-binding motifs. Identification of defective variants of this signaling protein in asthma, mastocytosis, and mast cell leukemia patients and demonstration of the importance of RasGRP4 in mast cell development and function.

Author(s):  
Paul Anderson
Blood ◽  
2001 ◽  
Vol 98 (13) ◽  
pp. 3784-3792 ◽  
Author(s):  
Gerit-Holger Schernthaner ◽  
John-Hendrik Jordan ◽  
Minoo Ghannadan ◽  
Hermine Agis ◽  
Dorian Bevec ◽  
...  

Abstract Recent data suggest that mast cells (MCs) in patients with systemic mastocytosis or mast cell leukemia express a CD2-reactive antigen. To explore the biochemical nature and function of this antigen, primary MCs as well as the MC line HMC-1 derived from a patient with mast cell leukemia were examined. Northern blot experiments revealed expression of CD2 messenger RNA in HMC-1, whereas primary nonneoplastic MCs did not express transcripts for CD2. In cell surface staining experiments, bone marrow (BM) MCs in systemic mastocytosis (n = 12) as well as HMC-1 cells (30%-80%) were found to express the T11-1 and T11-2 (but not T11-3) epitopes of CD2. By contrast, BM MCs in myelodysplastic syndromes and nonhematologic disorders (bronchiogenic carcinoma, foreskin phimosis, uterine myeomata ) were consistently CD2−. All MC species analyzed including HMC-1 were found to express LFA-3 (CD58), the natural ligand of CD2. To study the functional role of CD2 on neoplastic MCs, CD2+ and CD2− HMC-1 cells were separated by cell sorting. CD2+ HMC-1 cells were found to form spontaneous aggregates and rosettes with sheep erythrocytes in excess over CD2−cells, and a T11-1 antibody inhibited both the aggregation and rosette formation. Moreover, exposure of CD2+ HMC-1 cells to T11-1 or T11-2 antibody was followed by expression of T11-3. In addition, stimulation of neoplastic MCs through T11-3 and a second CD2 epitope resulted in histamine release. These data show that neoplastic MCs express functionally active CD2. It is hypothesized that expression of CD2 is associated with pathologic accumulation and function of MCs in systemic mastocytosis.


2017 ◽  
Vol 67 ◽  
pp. 198-204 ◽  
Author(s):  
Ren Ching Wang ◽  
David Ward ◽  
Philip Dunn ◽  
Chung-Che Chang

2017 ◽  
Vol 53 ◽  
pp. S92
Author(s):  
Miroslava Kardosova ◽  
Lucie Potuckova ◽  
Ivana Halova ◽  
Polina Zjablovskaja ◽  
Lubica Draberova ◽  
...  

2002 ◽  
Vol 277 (28) ◽  
pp. 25756-25774 ◽  
Author(s):  
Yi Yang ◽  
Lixin Li ◽  
Guang W. Wong ◽  
Steven A. Krilis ◽  
M. S. Madhusudhan ◽  
...  

1989 ◽  
Vol 26 (1) ◽  
pp. 90-92 ◽  
Author(s):  
D. E. Bean-Knudsen ◽  
C. W. Caldwell ◽  
J. E. Wagner ◽  
H. F. Stills

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3109-3109 ◽  
Author(s):  
Mohamad Jawhar ◽  
Juliana Schwaab ◽  
Manja Meggendorfer ◽  
Nicole Naumann ◽  
Hans-Peter Horny ◽  
...  

Abstract Mast cell leukemia (MCL) is a rare variant of advanced systemic mastocytosis (advSM) characterized by ≥20% mast cells (MCs) in a bone marrow (BM) smear. Our current knowledge of MCL, including clinical and molecular characteristics, treatment options, survival, and prognostic factors is limited to case reports, small case-series and/or literature reviews. While the KIT D816V mutation is present in >80-90% of patients in other SM subtypes, it has only been reported in approximately 50% of patients with MCL. Of interest, recent data have highlighted that the molecular pathogenesis of advSM/MCL is complex. In particular, additional mutations in SRSF2, ASXL1 or RUNX1 (S/A/Rpos), seen in 60-70% of advSM patients, have a significant adverse impact on disease phenotype and prognosis (Jawhar et al., Leukemia, 2016). Here, we sought to evaluate a) relevant clinical and molecular characteristics, b) treatment responses, and c) survival and prognostic factors in 28 MCL patients (median age 67 years; range, 45-82; male 57%), enrolled in the 'German Registry of Disorders on Eosinophils and Mast Cells'. The median percentages of MC in BM smears and trephine biopsies were 25% (range, 20-95) and 65% (range, 20-100; 82% ≥50%), respectively. MC in peripheral blood (PB) ≥10% (leukemic MCL) were seen in only 2/28 patients. Median serum tryptase level was 550 µg/L (range, 160-1850; 93% ≥200, normal value <11.4). An associated hematologic neoplasm (AHN), e.g. CMML (n=7), MDS/MPNu (n=6), MDS (n=5) or CEL (n=2), was diagnosed in 20/28 (71%) patients. Primary MCL was diagnosed in 16/28 (57%) patients and secondary MCL evolving from other advSM subtypes (SM-AHN, n=10; aggressive SM, n=2) in 12/28 (43%) patients with a median of 18 months (range, 4-71) to transformation. Hematologic C-findings such as hemoglobin <10 g/dL and/or platelets <100x109/L were identified in 26/28 (93%) patients. Non-hematologic signs of organ dysfunction included elevated alkaline phosphatase (AP), seen in 20/28 patients (71%, median 181; range 59-548) and splenomegaly in 28/28 (100%) patients. Spleen volumetry results obtained by magnetic resonance imaging were available in 16 patients and showed marked splenomegaly (≥1200 mL) in 8/16 cases (50%). Mutations in KIT were identified in 25/28 (89%) patients (D816V, n=19; D816H, n=3; D816Y, n=2; F522C, n=1) with a median KIT D816V expressed allele burden of 43% (range 20-98) in peripheral blood as measured by quantitative RT-PCR (RT-qPCR). S/A/Rpos were identified in 13/25 (52%) patients (by NGS analyses of 18 myeloid genes). Median observation from the time of MCL diagnosis was 13 months (range, 2-86) and 18/28 patients (64%) died with a median OS of 17 months (95% confidence interval [CI], 10-24). Cytoreductive treatment included midostaurin (n=13), cladribine followed by midostaurin or vice versa (n=9), cladribine (n=3), midostaurin and/or cladribine followed by intensive chemotherapy (n=3) with (n=1) or without (n=2) allogeneic stem cell transplantation. The median overall survival (OS) was 17 months (95% confidence interval, CI [10-24]) with a 2-year OS probability of 24% for all patients. In univariate analyses of multiple clinical, laboratory and molecular variables only bicytopenia (hemoglobin <10 g/dL and platelets <100x109/L, n=13 vs. hemoglobin ≥10 g/dL or platelets ≥100x109/L, n=13, P=0.02, hazard ratio, HR 3.2 [1.2-8.9]), elevated AP (P=0.009, HR 3.3 [1.3-8.3]) and S/A/Rpos (P=0.007, HR 5.0 [1.8-18.1]) were significantly inferior regarding OS. In multivariate analyses, S/A/Rpos remained the only independent poor risk marker for OS (Figure). There was no significant difference regarding OS between primary vs. secondary MCL (Figure) or MCL with vs. without AHN. Of interest, no difference regarding OS was detected in comparison between patients treated with midostaurin (n=13) vs. patients treated with cladribine following midostaurin or vice versa (n=9). In summary, we have found that a) leukemic MCL and MCL without C-findings are rare, b) secondary MCL is frequent and evolves from other advSM subtypes but not ISM, c) KIT D816V mutations are more frequent than previously reported and KIT D816V negative patients should be tested for other KIT mutations d) the prognostically highly relevant mutations in the S/A/R gene panel are present in approximately 50% of patients with MCL, and e) median OS is approximately 1.5 years with significantly inferior survival in S/A/Rpos patients. Disclosures Meggendorfer: MLL Munich Leukemia Laboratory: Employment. Valent:Amgen: Honoraria; Novartis: Honoraria, Research Funding; Celegene: Honoraria, Research Funding.


2019 ◽  
Vol 14 (03) ◽  
pp. 265-269
Author(s):  
Elham Jafari ◽  
◽  
Ali Hadipour ◽  
Behjat Kalantari Khandani ◽  
Firoozeh Abolhasani ◽  
...  

Cytometry ◽  
1997 ◽  
Vol 30 (2) ◽  
pp. 98-102 ◽  
Author(s):  
Luis Escribano ◽  
Alberto Orfao ◽  
Jes�s Villarrubia ◽  
Flor Mart�n ◽  
Jos� I. Madruga ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document