Faculty Opinions recommendation of Structure of the LpxC deacetylase with a bound substrate-analog inhibitor.

Author(s):  
Liang Tong
Keyword(s):  
2017 ◽  
Vol 15 (14) ◽  
pp. 2869-2891 ◽  
Author(s):  
Tsutomu Hoshino

In the past five years, there have been remarkable advances in the study of β-amyrin synthase. This review outlines the catalytic mechanism and substrate recognition in β-amyrin biosynthesis, which have been attained by the site-directed mutagenesis and substrate analog experiments.


2016 ◽  
Vol 59 (19) ◽  
pp. 9269-9275 ◽  
Author(s):  
Rosaria Luciani ◽  
Puneet Saxena ◽  
Sachin Surade ◽  
Matteo Santucci ◽  
Alberto Venturelli ◽  
...  

2005 ◽  
Vol 280 (16) ◽  
pp. 16197-16207 ◽  
Author(s):  
Khanita Karaveg ◽  
Aloysius Siriwardena ◽  
Wolfram Tempel ◽  
Zhi-Jie Liu ◽  
John Glushka ◽  
...  

Quality control in the endoplasmic reticulum (ER) determines the fate of newly synthesized glycoproteins toward either correct folding or disposal by ER-associated degradation. Initiation of the disposal process involves selective trimming ofN-glycans attached to misfolded glycoproteins by ER α-mannosidase I and subsequent recognition by the ER degradation-enhancing α-mannosidase-like protein family of lectins, both members of glycosylhydrolase family 47. The unusual inverting hydrolytic mechanism catalyzed by members of this family is investigated here by a combination of kinetic and binding analyses of wild type and mutant forms of human ER α-mannosidase I as well as by structural analysis of a co-complex with an uncleaved thiodisaccharide substrate analog. These data reveal the roles of potential catalytic acid and base residues and the identification of a novel3S1sugar conformation for the bound substrate analog. The co-crystal structure described here, in combination with the1C4conformation of a previously identified co-complex with the glycone mimic, 1-deoxymannojirimycin, indicates that glycoside bond cleavage proceeds through a least motion conformational twist of a properly predisposed substrate in the –1 subsite. A novel3H4conformation is proposed as the exploded transition state.


2018 ◽  
Vol 115 (35) ◽  
pp. 8769-8774 ◽  
Author(s):  
Hemant Kumar ◽  
Janet S. Finer-Moore ◽  
Xiaoxu Jiang ◽  
Irina Smirnova ◽  
Vladimir Kasho ◽  
...  

The lactose permease of Escherichia coli (LacY), a dynamic polytopic membrane transport protein, catalyzes galactoside/H+ symport and operates by an alternating access mechanism that exhibits multiple conformations, the distribution of which is altered by sugar-binding. Camelid nanobodies were made against a double-mutant Gly46 → Trp/Gly262 → Trp (LacYWW) that produces an outward-open conformation, as opposed to the cytoplasmic open-state crystal structure of WT LacY. Nanobody 9047 (Nb9047) stabilizes WT LacY in a periplasmic-open conformation. Here, we describe the X-ray crystal structure of a complex between LacYWW, the high-affinity substrate analog 4-nitrophenyl-α-d-galactoside (NPG), and Nb9047 at 3-Å resolution. The present crystal structure demonstrates that Nb9047 binds to the periplasmic face of LacY, primarily to the C-terminal six-helical bundle, while a flexible loop of the Nb forms a bridge between the N- and C-terminal halves of LacY across the periplasmic vestibule. The bound Nb partially covers the vestibule, yet does not affect the on-rates or off-rates for the substrate binding to LacYWW, which implicates dynamic flexibility of the Nb–LacYWW complex. Nb9047-binding neither changes the overall structure of LacYWW with bound NPG, nor the positions of side chains comprising the galactoside-binding site. The current NPG-bound structure exhibits a more occluded periplasmic vestibule than seen in a previous structure of a (different Nb) apo-LacYWW/Nb9039 complex that we argue is caused by sugar-binding, with major differences located at the periplasmic ends of transmembrane helices in the N-terminal half of LacY.


2019 ◽  
Vol 47 (12) ◽  
pp. 6551-6567 ◽  
Author(s):  
Amit Luthra ◽  
Naduni Paranagama ◽  
William Swinehart ◽  
Susan Bayooz ◽  
Phuc Phan ◽  
...  

Abstract The universally conserved N6-threonylcarbamoyladenosine (t6A) modification of tRNA is essential for translational fidelity. In bacteria, t6A biosynthesis starts with the TsaC/TsaC2-catalyzed synthesis of the intermediate threonylcarbamoyl adenylate (TC–AMP), followed by transfer of the threonylcarbamoyl (TC) moiety to adenine-37 of tRNA by the TC-transfer complex comprised of TsaB, TsaD and TsaE subunits and possessing an ATPase activity required for multi-turnover of the t6A cycle. We report a 2.5-Å crystal structure of the T. maritima TC-transfer complex (TmTsaB2D2E2) bound to Mg2+-ATP in the ATPase site, and substrate analog carboxy-AMP in the TC-transfer site. Site directed mutagenesis results show that residues in the conserved Switch I and Switch II motifs of TsaE mediate the ATP hydrolysis-driven reactivation/reset step of the t6A cycle. Further, SAXS analysis of the TmTsaB2D2-tRNA complex in solution reveals bound tRNA lodged in the TsaE binding cavity, confirming our previous biochemical data. Based on the crystal structure and molecular docking of TC–AMP and adenine-37 in the TC-transfer site, we propose a model for the mechanism of TC transfer by this universal biosynthetic system.


Sign in / Sign up

Export Citation Format

Share Document