prolyl isomerase
Recently Published Documents


TOTAL DOCUMENTS

458
(FIVE YEARS 56)

H-INDEX

61
(FIVE YEARS 5)

Author(s):  
Ellen M. Langer ◽  
Isabel A. English ◽  
Vidhi Shah ◽  
Kevin MacPherson ◽  
Kayleigh M. Kresse ◽  
...  

2021 ◽  
Vol 220 (12) ◽  
Author(s):  
Amrita Kumari ◽  
Chandan Kumar ◽  
Rajaiah Pergu ◽  
Megha Kumar ◽  
Sagar P. Mahale ◽  
...  

The dynein motor performs multiple functions in mitosis by engaging with a wide cargo spectrum. One way to regulate dynein’s cargo-binding selectivity is through the C-terminal domain (CTD) of its light intermediate chain 1 subunit (LIC1), which binds directly with cargo adaptors. Here we show that mitotic phosphorylation of LIC1-CTD at its three cdk1 sites is required for proper mitotic progression, for dynein loading onto prometaphase kinetochores, and for spindle assembly checkpoint inactivation in human cells. Mitotic LIC1-CTD phosphorylation also engages the prolyl isomerase Pin1 predominantly to Hook2-dynein-Nde1-Lis1 complexes, but not to dynein-spindly-dynactin complexes. LIC1-CTD dephosphorylation abrogates dynein-Pin1 binding, promotes prophase centrosome–nuclear envelope detachment, and impairs metaphase chromosome congression and mitotic Golgi fragmentation, without affecting interphase membrane transport. Phosphomutation of a conserved LIC1-CTD SP site in zebrafish leads to early developmental defects. Our work reveals that LIC1-CTD phosphorylation differentially regulates distinct mitotic dynein pools and suggests the evolutionary conservation of this phosphoregulation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Anchal ◽  
Vineeta Kaushik ◽  
Manisha Goel

Cis-trans isomerization of the peptide bond prior to proline is an intrinsically slow process but plays an essential role in protein folding. In vivo cis-trans isomerization reaction is catalyzed by Peptidyl-prolyl isomerase (PPIases), a category of proteins widely distributed among all the three domains of life. The present study is majorly focused on the distribution of different types of PPIases in the archaeal domain. All the three hitherto known families of PPIases (namely FKBP, Cyclophilin and parvulin) were studied to identify the evolutionary conservation across the phylum archaea. The basic function of cyclophilin, FKBP and parvulin has been conserved whereas the sequence alignment suggested variations in each clade. The conserved residues within the predicted motif of each family are unique. The available protein structures of different PPIase across various domains were aligned to ascertain the structural variation in the catalytic site. The structural alignment of native PPIase proteins among various groups suggested that the apo-protein may have variable conformations but when bound to their specific inhibitors, they attain similar active site configuration. This is the first study of its kind which explores the distribution of archaeal PPIases, along with detailed structural and functional analysis of each type of PPIase found in archaea.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Takeshi Yamamotoya ◽  
Yusuke Nakatsu ◽  
Machi Kanna ◽  
Shun Hasei ◽  
Yukino Ohata ◽  
...  

AbstractNovel coronavirus disease 2019 (COVID-19) has emerged as a global pandemic with far-reaching societal impact. Here we demonstrate that Pin1 is a key cellular molecule necessary for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) propagation. In this study, siRNA-mediated silencing of Pin1 expression markedly suppressed the proliferation of SARS-CoV-2 in VeroE6/TMPRSS2 cells. In addition, several recently generated Pin1 inhibitors showed strong inhibitory effects on SARS-CoV-2 proliferation, measured by both viral mRNA and protein synthesis, and alleviated the cytopathic effect (CPE) on VeroE6/TMPRSS2 cells. One compound, termed H-77, was found to block SARS-CoV-2 proliferation at an EC50 below 5 μM regardless of whether it was added to the culture medium prior to or after SARS-CoV-2 infection. The inhibition of viral N protein mRNA synthesis by H-77 implies that the molecular mechanism underlying SARS-CoV-2 inhibition is likely to be associated with viral gene transcription or earlier steps. Another Pin1 inhibitor, all-trans retinoic acid (ATRA)—a commercially available drug used to treat acute promyelocytic leukemia (APL) and which both activates the retinoic acid receptor and inhibits the activity of Pin1—similarly reduced the proliferation of SARS-CoV-2. Taken together, the results indicate that Pin1 inhibitors could serve as potential therapeutic agents for COVID-19.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1130
Author(s):  
Samia Bedouhene ◽  
Min Liu ◽  
Nassima Senani ◽  
Tarek Boussetta ◽  
Coralie Pintard ◽  
...  

Neutrophils are key cells of the innate immune and inflammatory responses. They are the first blood cells to migrate to the infection site where they release high amounts of reactive oxygen species (ROS) and several peptides and enzymes required for microbial killing. However, excessive neutrophil activation can induce tissue injury participating in inflammation, thus the characterization of the enzymes involved in neutrophil activation could help to identify new pharmacological targets to treat inflammation. The prolyl-isomerase Pin1 is a ubiquitous enzyme involved in several functions, however, its role in neutrophil functions is less known. In this study, we show that the bacterial peptide N-formyl-methionyl-leucyl-phenylalanine (fMLP or fMLF), a G-protein coupled receptor (GPCR) agonist-induced Pin1 activation in human neutrophils. PiB and juglone, two Pin1 inhibitors inhibited Pin1 activity in neutrophils and consequently inhibited fMLP-induced chemotaxis and -degranulation of azurophil and specific granules as measured by myeloperoxidase and neutrophil gelatinase-associated lipocalin (NGAL) release respectively. We also showed that PiB inhibited TNFα + fMLP-induced superoxide production, confirming the effect of juglone. These data show that inhibitors of Pin1 impaired key pro-inflammatory neutrophil functions elicited by GPCR activation and suggest that Pin1 could control neutrophil inflammatory functions.


Cell Reports ◽  
2021 ◽  
Vol 36 (11) ◽  
pp. 109694
Author(s):  
Francesco Napoletano ◽  
Gloria Ferrari Bravo ◽  
Ilaria Anna Pia Voto ◽  
Aurora Santin ◽  
Lucia Celora ◽  
...  

Angiogenesis ◽  
2021 ◽  
Author(s):  
Kondababu Kurakula ◽  
Quint A. J. Hagdorn ◽  
Diederik E. van der Feen ◽  
Anton Vonk Noordegraaf ◽  
Peter ten Dijke ◽  
...  

AbstractPulmonary arterial hypertension (PAH) is a devastating disease, characterized by obstructive pulmonary vascular remodelling ultimately leading to right ventricular (RV) failure and death. Disturbed transforming growth factor-β (TGF-β)/bone morphogenetic protein (BMP) signalling, endothelial cell dysfunction, increased proliferation of smooth muscle cells and fibroblasts, and inflammation contribute to this abnormal remodelling. Peptidyl-prolyl isomerase Pin1 has been identified as a critical driver of proliferation and inflammation in vascular cells, but its role in the disturbed TGF-β/BMP signalling, endothelial cell dysfunction, and vascular remodelling in PAH is unknown. Here, we report that Pin1 expression is increased in cultured pulmonary microvascular endothelial cells (MVECs) and lung tissue of PAH patients. Pin1 inhibitor, juglone significantly decreased TGF-β signalling, increased BMP signalling, normalized their hyper-proliferative, and inflammatory phenotype. Juglone treatment reversed vascular remodelling through reducing TGF-β signalling in monocrotaline + shunt-PAH rat model. Juglone treatment decreased Fulton index, but did not affect or harm cardiac function and remodelling in rats with RV pressure load induced by pulmonary artery banding. Our study demonstrates that inhibition of Pin1 reversed the PAH phenotype in PAH MVECs in vitro and in PAH rats in vivo, potentially through modulation of TGF-β/BMP signalling pathways. Selective inhibition of Pin1 could be a novel therapeutic option for the treatment of PAH.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Maria Babu ◽  
Filippo Favretto ◽  
Alain Ibáñez de Opakua ◽  
Marija Rankovic ◽  
Stefan Becker ◽  
...  

AbstractAmyotrophic lateral sclerosis and frontotemporal dementia are two neurodegenerative diseases with overlapping clinical features and the pathological hallmark of cytoplasmic deposits of misfolded proteins. The most frequent cause of familial forms of these diseases is a hexanucleotide repeat expansion in the non-coding region of the C9ORF72 gene that is translated into dipeptide repeat polymers. Here we show that proline/arginine repeat polymers derail protein folding by sequestering molecular chaperones. We demonstrate that proline/arginine repeat polymers inhibit the folding catalyst activity of PPIA, an abundant molecular chaperone and prolyl isomerase in the brain that is altered in amyotrophic lateral sclerosis. NMR spectroscopy reveals that proline/arginine repeat polymers bind to the active site of PPIA. X-ray crystallography determines the atomic structure of a proline/arginine repeat polymer in complex with the prolyl isomerase and defines the molecular basis for the specificity of disease-associated proline/arginine polymer interactions. The combined data establish a toxic mechanism that is specific for proline/arginine dipeptide repeat polymers and leads to derailed protein homeostasis in C9orf72-associated neurodegenerative diseases.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Yanzhuo Zhang ◽  
Zhe Lv ◽  
Yudong Liu ◽  
Huan Cao ◽  
Jianwang Yang ◽  
...  

A growing amount of evidence has confirmed the crucial role of the prolyl isomerase PIN1 in aging and age-related diseases. However, the mechanism of PIN1 in age-related hearing loss (ARHL) remains unclear. Pathologically, ARHL is primarily due to the loss and dysfunction of hair cells (HCs) and spiral ganglion cells (SGCs) in the cochlea. Therefore, in this study, we aimed to investigate the role of PIN1 in protecting hair cells and auditory HEI-OC1 cells from senescence. Enzyme-linked immunosorbent assays, immunohistochemistry, and immunofluorescence were used to detect the PIN1 protein level in the serum of ARHL patients and C57BL/6 mice in different groups, and in the SGCs and HCs of young and aged C57BL/6 mice. In addition, a model of HEI-OC1 cell senescence induced by H2O2 was used. Adult C57BL/6 mice were treated with juglone, or juglone and NAC, for 4 weeks. Interestingly, we found that the PIN1 protein expression decreased in the serum of patients with ARHL, in senescent HEI-OC1 cells, and in the cochlea of aged mice. Moreover, under H2O2 and juglone treatment, a large amount of ROS was produced, and phosphorylation of p53 was induced. Importantly, PIN1 expression was significantly increased by treatment with the p53 inhibitor pifithrin-α. Overexpression of PIN1 reversed the increased level of p-p53 and rescued HEI-OC1 cells from senescence. Furthermore, PIN1 mediated cellular senescence by the PI3K/Akt/mTOR signaling pathway. In vivo data from C57BL/6 mice showed that treatment with juglone led to hearing loss. Taken together, these findings demonstrated that PIN1 may act as a vital modulator in hair cell and HEI-OC1 cell senescence.


2021 ◽  
Author(s):  
Navin Viswakarma ◽  
Gautam Sondarva ◽  
Daniel R. Principe ◽  
Rakesh Sathish Nair ◽  
Sandeep Kumar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document