Faculty Opinions recommendation of Functional analysis of C-TAK1 substrate binding and identification of PKP2 as a new C-TAK1 substrate.

Author(s):  
Kathleen J Green
Open Biology ◽  
2017 ◽  
Vol 7 (4) ◽  
pp. 160327 ◽  
Author(s):  
Rubén Zapata-Pérez ◽  
Fernando Gil-Ortiz ◽  
Ana Belén Martínez-Moñino ◽  
Antonio Ginés García-Saura ◽  
Jordi Juanhuix ◽  
...  

Macrodomains are ubiquitous conserved domains that bind or transform ADP-ribose (ADPr) metabolites. In humans, they are involved in transcription, X-chromosome inactivation, neurodegeneration and modulating PARP1 signalling, making them potential targets for therapeutic agents. Unfortunately, some aspects related to the substrate binding and catalysis of MacroD-like macrodomains still remain unclear, since mutation of the proposed catalytic aspartate does not completely abolish enzyme activity. Here, we present a functional and structural characterization of a macrodomain from the extremely halotolerant and alkaliphilic bacterium Oceanobacillus iheyensis (OiMacroD), related to hMacroD1/hMacroD2, shedding light on substrate binding and catalysis. The crystal structures of D40A, N30A and G37V mutants, and those with MES, ADPr and ADP bound, allowed us to identify five fixed water molecules that play a significant role in substrate binding. Closure of the β6–α4 loop is revealed as essential not only for pyrophosphate recognition, but also for distal ribose orientation. In addition, a novel structural role for residue D40 is identified. Furthermore, it is revealed that OiMacroD not only catalyses the hydrolysis of O -acetyl-ADP-ribose but also reverses protein mono-ADP-ribosylation. Finally, mutant G37V supports the participation of a substrate-coordinated water molecule in catalysis that helps to select the proper substrate conformation.


2019 ◽  
Author(s):  
Chuang-Kai Chueh ◽  
Nilanjan Som ◽  
Lu-Chu Ke ◽  
Meng-Ru Ho ◽  
Manjula Reddy ◽  
...  

AbstractCarboxyl (C)-terminal processing proteases (CTPs) participate in protective and regulatory proteolysis in bacteria. The PDZ domain is central to the activity of CTPs but plays inherently different regulatory roles. For example, the PDZ domain inhibits the activity of the signaling protease CtpB by blocking the active site but is required for the activation of Prc (or Tsp), a tail-specific protease that degrades the ssrA-tagged proteins. Here, by structural and functional analysis we show that in the unliganded resting state of Prc, the PDZ domain is docked inside the bowl-shaped scaffold without contacting the active site, which is kept in a default misaligned conformation. In Prc, a hydrophobic substrate sensor distinct from CtpB engages substrate binding to the PDZ domain and triggers a structural remodeling to align the active site residues. Therefore, this work reveals the structural basis for understanding the contrasting roles of the PDZ domain in the regulation of CTPs.


PLoS ONE ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. e0230198
Author(s):  
Matthew K. Howard ◽  
Brian S. Sohn ◽  
Julius von Borcke ◽  
Andy Xu ◽  
Meredith E. Jackrel

Author(s):  
Irwin I. Singer

Our previous results indicate that two types of fibronectin-cytoskeletal associations may be formed at the fibroblast surface: dorsal matrixbinding fibronexuses generated in high serum (5% FBS) cultures, and ventral substrate-adhering units formed in low serum (0.3% FBS) cultures. The substrate-adhering fibronexus consists of at least vinculin (VN) and actin in its cytoplasmic leg, and fibronectin (FN) as one of its major extracellular components. This substrate-adhesion complex is localized in focal contacts, the sites of closest substratum approach visualized with interference reflection microscopy, which appear to be the major points of cell-tosubstrate adhesion. In fibroblasts, the latter substrate-binding complex is characteristic of cultures that are arrested at the G1 phase of the cell cycle due to the low serum concentration in their medium. These arrested fibroblasts are very well spread, flattened, and immobile.


Sign in / Sign up

Export Citation Format

Share Document